DNA Cell Biol. 2025 Aug 25.
Mitochondria, originating from symbiotic ancestors, are acknowledged as the powerhouses of the cell. Their relevance to various cancer types is underscored by altered glucose metabolism (Warburg effect). Mitochondrial DNA (mtDNA) plays a crucial role in oxidative damage and is a significant contributor to cancer onset and progression. Tobacco and alcohol consumption increases reactive oxygen species generation, inducing oxidative stress that disrupts respiratory activity and mtDNA, thereby promoting carcinogenesis. This review emphasizes the link between mitochondrial dysfunction and cancer, particularly in oral squamous cell carcinoma (OSCC), highlighting the role of mtDNA mutations. This review discusses environmental factors, such as tobacco use and human papillomavirus infection, that impact mitochondrial function, stresses the importance of mitochondrial-targeted therapies, and explores the influence of microRNAs (miRNAs) on mitochondrial metabolism in cancer cells. Mitocans and miRNAs have emerged as promising therapeutic agents for OSCC. The subsequent sections delve into recent pivotal research on mitochondria, identifying mtDNA alterations as potential cancer biomarkers. These insights promise new perspectives on noninvasive cancer detection, heralding advancements in cancer therapeutics.
Keywords: biomarkers; cancer metabolism; cell-free mitochondrial DNA; mitochondrial DNA; mitochondrial dysfunction; oral squamous cell carcinoma