J Physiol. 2025 Jan 14.
The permeability transition (PT) is a permeability increase of the mitochondrial inner membrane causing mitochondrial swelling in response to matrix Ca2+. The PT is mediated by regulated channel(s), the PT pore(s) (PTP), which can be generated by at least two components, adenine nucleotide translocator (ANT) and ATP synthase. Whether these provide independent permeation pathways remains to be established. Here, we assessed the contribution of ANT to the PT based on the effects of the selective ANT inhibitors atractylate (ATR) and bongkrekate (BKA), which trigger and inhibit channel formation by ANT, respectively. BKA partially inhibited Ca2+-dependent PT and did not prevent the inducing effect of phenylarsine oxide, which was still present in mouse embryonic fibroblasts deleted for all ANT isoforms. The contribution of ANT to the PT emerged at pH 6.5 (a condition that inhibits ATP synthase channel opening) in the presence of ATR, which triggered mitochondrial swelling and elicited currents in patch-clamped mitoplasts. Unexpectedly, ANT-dependent PT at pH 6.5 could also be stimulated by benzodiazepine-423 [a selective ligand of the oligomycin sensitivity conferral protein (OSCP) subunit of ATP synthase], suggesting that the ANT channel is regulated by the peripheral stalk of ATP synthase. In keeping with docking simulations, ANT could be co-immunoprecipitated with ATP synthase subunits c and g, and oligomycin (which binds adjacent c subunits) decreased the association of ANT with subunit c. These results reveal a close cooperation between ANT and ATP synthase in the PT and open new perspectives in the study of this process. KEY POINTS: We have assessed the relative role of adenine nucleotide translocator (ANT) and ATP synthase in generating the mitochondrial permeability transition (PT). At pH 7.4, bongkrekate had little effect on Ca2+-dependent PT, and did not prevent the inducing effect of phenylarsine oxide, which was still present in mouse embryonic fibroblasts deleted for all ANT isoforms. The contribution of ANT emerged at pH 6.5 (which inhibits ATP synthase channel opening) in the presence of atractylate, which triggered mitochondrial swelling and elicited currents in patch-clamped mitoplasts. Benzodiazepine-423, a selective ligand of the oligomycin sensitivity conferral protein subunit of ATP synthase, stimulated ANT-dependent PT at pH 6.5, suggesting that the ANT channel is regulated by the peripheral stalk of ATP synthase. ANT could be co-immunoprecipitated with ATP synthase subunits c and g; oligomycin, which binds adjacent c subunits, decreased the association with subunit c, in keeping with docking simulations.
Keywords: ATP synthase; adenine nucleotide translocator; calcium; mitochondria; permeability transition