bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2024–05–26
twenty-six papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Nat Commun. 2024 May 18. 15(1): 4244
      Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.
    DOI:  https://doi.org/10.1038/s41467-024-48695-2
  2. Cancer Discov. 2024 May 24.
      Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.
    DOI:  https://doi.org/10.1158/2159-8290.CD-23-1145
  3. bioRxiv. 2024 May 06. pii: 2024.05.03.592013. [Epub ahead of print]
      Proliferating cancer cells actively utilize anabolic processes for biomass production, including de novo biosynthesis of amino acids, nucleotides, and fatty acids. The key enzyme of the fatty acid biosynthesis pathway, fatty acid synthase (FASN), is widely recognized as a promising therapeutic target in cancer and other health conditions 1,2 . Here, we establish a metabolic signature of FASN inhibition using a panel of pharmacological inhibitors (GSK2194069, TVB-2640, TVB-3166, C75, cerulenin, and Fasnall). We find that the activity of commonly used FASN inhibitors is inconsistent with the metabolic signature of FASN inhibition (accumulation of malonate, succinate, malonyl coenzyme A, succinyl coenzyme A, and other metabolic perturbations). Moreover, we show that one of these putative FASN inhibitors, Fasnall, is a respiratory Complex I inhibitor that mimics FASN inhibition through NADH accumulation and consequent depletion of the tricarboxylic acid cycle metabolites. We demonstrate that Fasnall impairs tumor growth in several oxidative phosphorylation-dependent cancer models, including combination therapy-resistant melanoma patient-derived xenografts. Fasnall administration does not reproduce neurological side effects in mice reported for other Complex I inhibitors 3,4 . Our results have significant implications for understanding the FASN role in human health and disease and provide evidence of therapeutic potential for Complex I inhibitors with fast systemic clearance. Our findings also highlight the continuing need for validation of small molecule inhibitors to distinguish high-quality chemical probes and to expand the understanding of their application.
    DOI:  https://doi.org/10.1101/2024.05.03.592013
  4. Cell Death Differ. 2024 May 22.
      Deregulated glucose metabolism termed the "Warburg effect" is a fundamental feature of cancers, including the colorectal cancer. This is typically characterized with an increased rate of glycolysis, and a concomitant reduced rate of the tricarboxylic acid (TCA) cycle metabolism as compared to the normal cells. How the TCA cycle is manipulated in cancer cells remains unknown. Here, we show that O-linked N-acetylglucosamine (O-GlcNAc) regulates the TCA cycle in colorectal cancer cells. Depletion of OGT, the sole transferase of O-GlcNAc, significantly increases the TCA cycle metabolism in colorectal cancer cells. Mechanistically, OGT-catalyzed O-GlcNAc modification of c-Myc at serine 415 (S415) increases c-Myc stability, which transcriptionally upregulates the expression of pyruvate dehydrogenase kinase 2 (PDK2). PDK2 phosphorylates pyruvate dehydrogenase (PDH) to inhibit the activity of mitochondrial pyruvate dehydrogenase complex, which reduces mitochondrial pyruvate metabolism, suppresses reactive oxygen species production, and promotes xenograft tumor growth. Furthermore, c-Myc S415 glycosylation levels positively correlate with PDK2 expression levels in clinical colorectal tumor tissues. This study highlights the OGT-c-Myc-PDK2 axis as a key mechanism linking oncoprotein activation with deregulated glucose metabolism in colorectal cancer.
    DOI:  https://doi.org/10.1038/s41418-024-01315-4
  5. bioRxiv. 2024 May 10. pii: 2024.05.09.592977. [Epub ahead of print]
      Sub-cellular compartmentalization of metabolism has important implications for the local production of metabolites and redox co-factors, as well as pathway regulation. 4'-phosphopantetheinyl (4'PP) groups are essential co-factors derived from coenzyme A and added to target proteins in both the cytoplasm and mitochondria by p hospho p antetheinyl transferase (PPTase) enzymes. Mammals express only one PPTase, thought to localize to the cytoplasm: aminoadipate semialdehyde dehydrogenase phosphopantetheinyl transferase (AASDHPPT); raising the question of how mitochondrial proteins are 4'PP-modified. We found that AASDHPPT is required for mitochondrial respiration and oxidative metabolism via the mitochondrial fatty acid synthesis (mtFAS) pathway. Moreover, we discovered that a pool of AASDHPPT localizes to the mitochondrial matrix via an N-terminal mitochondrial targeting sequence contained within the first 13 amino acids of the protein. Our data show that mitochondrial localization of AASDHPPT is required to support mtFAS function, and further identify two variants in Aasdhppt that are likely pathogenic in humans.
    DOI:  https://doi.org/10.1101/2024.05.09.592977
  6. Cancer Lett. 2024 May 22. pii: S0304-3835(24)00358-6. [Epub ahead of print] 216965
      Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to Venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
    Keywords:  Mitochondria; Navitoclax; Venetoclax; cancer metabolism; intrinsic apoptosis pathway; mitophagy; oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.canlet.2024.216965
  7. Hum Mol Genet. 2024 May 22. 33(R1): R47-R52
      The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.
    Keywords:  Coordination of translation and assembly; Gene expression; Mitochondria; OXPHOS assembly; Oxidative phosphorylation (OXPHOS); Translation
    DOI:  https://doi.org/10.1093/hmg/ddae025
  8. Nat Commun. 2024 May 24. 15(1): 4444
      Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.
    DOI:  https://doi.org/10.1038/s41467-024-48653-y
  9. Cell Rep Med. 2024 May 16. pii: S2666-3791(24)00272-6. [Epub ahead of print] 101580
      Natural killer (NK) cell-based immunotherapy holds promise for cancer treatment; however, its efficacy remains limited, necessitating the development of alternative strategies. Here, we report that venetoclax, an FDA-approved BCL-2 inhibitor, directly activates NK cells, enhancing their cytotoxicity against acute myeloid leukemia (AML) both in vitro and in vivo, likely independent of BCL-2 inhibition. Through comprehensive approaches, including bulk and single-cell RNA sequencing, avidity measurement, and functional assays, we demonstrate that venetoclax increases the avidity of NK cells to AML cells and promotes lytic granule polarization during immunological synapse (IS) formation. Notably, we identify a distinct CD161lowCD218b+ NK cell subpopulation that exhibits remarkable sensitivity to venetoclax treatment. Furthermore, venetoclax promotes mitochondrial respiration and ATP synthesis via the NF-κB pathway, thereby facilitating IS formation in NK cells. Collectively, our findings establish venetoclax as a multifaceted immunometabolic modulator of NK cell function and provide a promising strategy for augmenting NK cell-based cancer immunotherapy.
    Keywords:  NF-κB; RNA sequencing; acute myeloid leukemia; avidity; cytotoxicity; immunological synapse; immunotherapy; mitochondrial respiration; natural killer cells; venetoclax
    DOI:  https://doi.org/10.1016/j.xcrm.2024.101580
  10. Hum Mol Genet. 2024 May 22. 33(R1): R61-R79
      Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
    Keywords:  animal models; gene expression; mitochondria; protein synthesis
    DOI:  https://doi.org/10.1093/hmg/ddae020
  11. Nat Commun. 2024 May 20. 15(1): 4266
      Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.
    DOI:  https://doi.org/10.1038/s41467-024-47868-3
  12. bioRxiv. 2024 May 09. pii: 2024.05.06.592780. [Epub ahead of print]
      Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic acid and adrenic acid. These PUFAs then accumulate in phospholipids, particularly ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools dictates their sensitivity to ferroptosis.
    DOI:  https://doi.org/10.1101/2024.05.06.592780
  13. bioRxiv. 2024 May 13. pii: 2024.05.13.593939. [Epub ahead of print]
      Lipids are essential for tumours because of their structural, energetic, and signaling roles. While many cancer cells upregulate lipid synthesis, growing evidence suggests that tumours simultaneously intensify the uptake of circulating lipids carried by lipoproteins. Which mechanisms promote the uptake of extracellular lipids, and how this pool of lipids contributes to cancer progression, are poorly understood. Here, using functional genetic screens, we find that lipoprotein uptake confers resistance to lipid peroxidation and ferroptotic cell death. Lipoprotein supplementation robustly inhibits ferroptosis across numerous cancer types. Mechanistically, cancer cells take up lipoproteins through a pathway dependent on sulfated glycosaminoglycans (GAGs) linked to cell-surface proteoglycans. Tumour GAGs are a major determinant of the uptake of both low and high density lipoproteins. Impairment of glycosaminoglycan synthesis or acute degradation of surface GAGs decreases the uptake of lipoproteins, sensitizes cells to ferroptosis and reduces tumour growth in mice. We also find that human clear cell renal cell carcinomas, a distinctively lipid-rich tumour type, display elevated levels of lipoprotein-derived antioxidants and the GAG chondroitin sulfate than non-malignant human kidney. Altogether, our work identifies lipoprotein uptake as an essential anti-ferroptotic mechanism for cancer cells to overcome lipid oxidative stress in vivo, and reveals GAG biosynthesis as an unexpected mediator of this process.
    DOI:  https://doi.org/10.1101/2024.05.13.593939
  14. Elife. 2024 May 24. pii: RP95652. [Epub ahead of print]13
      The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.
    Keywords:  cancer; cancer biology; human; metabolism; tumor microenvironment
    DOI:  https://doi.org/10.7554/eLife.95652
  15. Nat Commun. 2024 May 20. 15(1): 4277
      Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb's free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.
    DOI:  https://doi.org/10.1038/s41467-024-48474-z
  16. Nat Metab. 2024 May 21.
      Lipid droplet tethering with mitochondria for fatty acid oxidation is critical for tumor cells to counteract energy stress. However, the underlying mechanism remains unclear. Here, we demonstrate that glucose deprivation induces phosphorylation of the glycolytic enzyme phosphofructokinase, liver type (PFKL), reducing its activity and favoring its interaction with perilipin 2 (PLIN2). On lipid droplets, PFKL acts as a protein kinase and phosphorylates PLIN2 to promote the binding of PLIN2 to carnitine palmitoyltransferase 1A (CPT1A). This results in the tethering of lipid droplets and mitochondria and the recruitment of adipose triglyceride lipase to the lipid droplet-mitochondria tethering regions to engage lipid mobilization. Interfering with this cascade inhibits tumor cell proliferation, promotes apoptosis and blunts liver tumor growth in male mice. These results reveal that energy stress confers a moonlight function to PFKL as a protein kinase to tether lipid droplets with mitochondria and highlight the crucial role of PFKL in the integrated regulation of glycolysis, lipid metabolism and mitochondrial oxidation.
    DOI:  https://doi.org/10.1038/s42255-024-01047-2
  17. J Biol Chem. 2024 May 21. pii: S0021-9258(24)01904-5. [Epub ahead of print] 107403
      Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional up-regulated of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally down-regulated in cellular and murine models of mitochondrial defects. We identified a role for the post-transcriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in C. elegans, that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.
    DOI:  https://doi.org/10.1016/j.jbc.2024.107403
  18. Biochem Biophys Res Commun. 2024 May 14. pii: S0006-291X(24)00653-3. [Epub ahead of print]719 150117
      The clinical treatment of human acute myeloid leukemia (AML) is rapidly progressing from chemotherapy to targeted therapies led by the BCL-2 inhibitor venetoclax (VEN). Despite its unprecedented success, VEN still encounters clinical resistance. Thus, uncovering the biological vulnerability of VEN-resistant AML disease and identifying effective therapies to treat them are urgently needed. We have previously demonstrated that iron oxide nanozymes (IONE) are capable of overcoming chemoresistance in AML. The current study reports a new activity of IONE in overcoming VEN resistance. Specifically, we revealed an aberrant redox balance with excessive intracellular reactive oxygen species (ROS) in VEN-resistant monocytic AML. Treatment with IONE potently induced ROS-dependent cell death in monocytic AML in both cell lines and primary AML models. In primary AML with developmental heterogeneity containing primitive and monocytic subpopulations, IONE selectively eradicated the VEN-resistant ROS-high monocytic subpopulation, successfully resolving the challenge of developmental heterogeneity faced by VEN. Overall, our study revealed an aberrant redox balance as a therapeutic target for monocytic AML and identified a candidate IONE that could selectively and potently eradicate VEN-resistant monocytic disease.
    Keywords:  Acute myeloid leukemia; Iron oxide nanoparticles; ROS; Venetoclax
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150117
  19. Cell Stem Cell. 2024 May 14. pii: S1934-5909(24)00176-0. [Epub ahead of print]
      Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.
    Keywords:  SDHAF1; adenosine triphosphate; hematopoietic stem cell; mitochondria; stem cell aging; stem cell metabolism; thrombopoietin
    DOI:  https://doi.org/10.1016/j.stem.2024.04.023
  20. NPJ Syst Biol Appl. 2024 May 24. 10(1): 55
      Aerobic glycolysis, or the Warburg effect, is used by cancer cells for proliferation while producing lactate. Although lactate production has wide implications for cancer progression, it is not known how this effect increases cell proliferation and relates to oxidative phosphorylation. Here, we elucidate that a negative feedback loop (NFL) is responsible for the Warburg effect. Further, we show that aerobic glycolysis works as an amplifier of oxidative phosphorylation. On the other hand, quiescence is an important property of cancer stem cells. Based on the NFL, we show that both aerobic glycolysis and oxidative phosphorylation, playing a synergistic role, are required to achieve cell quiescence. Further, our results suggest that the cells in their hypoxic niche are highly proliferative yet close to attaining quiescence by increasing their NADH/NAD+ ratio through the severity of hypoxia. The findings of this study can help in a better understanding of the link among metabolism, cell cycle, carcinogenesis, and stemness.
    DOI:  https://doi.org/10.1038/s41540-024-00377-x
  21. J Vis Exp. 2024 May 03.
      Over the last decades, the evidence accumulated about the existence of respiratory supercomplexes (SCs) has changed our understanding of the mitochondrial electron transport chain organization, giving rise to the proposal of the "plasticity model." This model postulates the coexistence of different proportions of SCs and complexes depending on the tissue or the cellular metabolic status. The dynamic nature of the assembly in SCs would allow cells to optimize the use of available fuels and the efficiency of electron transfer, minimizing reactive oxygen species generation and favoring the ability of cells to adapt to environmental changes. More recently, abnormalities in SC assembly have been reported in different diseases such as neurodegenerative disorders (Alzheimer's and Parkinson's disease), Barth Syndrome, Leigh syndrome, or cancer. The role of SC assembly alterations in disease progression still needs to be confirmed. Nevertheless, the availability of enough amounts of samples to determine the SC assembly status is often a challenge. This happens with biopsy or tissue samples that are small or have to be divided for multiple analyses, with cell cultures that have slow growth or come from microfluidic devices, with some primary cultures or rare cells, or when the effect of particular costly treatments has to be analyzed (with nanoparticles, very expensive compounds, etc.). In these cases, an efficient and easy-to-apply method is required. This paper presents a method adapted to obtain enriched mitochondrial fractions from small amounts of cells or tissues to analyze the structure and function of mitochondrial SCs by native electrophoresis followed by in-gel activity assays or western blot.
    DOI:  https://doi.org/10.3791/66771
  22. Hum Mol Genet. 2024 May 22. 33(R1): R92-R99
      The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.
    Keywords:  TALEN technology; base editing; gene modification; genetic enhancements; mitochondrial manipulation
    DOI:  https://doi.org/10.1093/hmg/ddae037
  23. Biomedicines. 2024 May 14. pii: 1086. [Epub ahead of print]12(5):
      DNA methyltransferase 3A (DNMT3A) and isocitrate dehydrogenase 1 and 2 (IDH1/2) are genes involved in epigenetic regulation, each mutated in 7-23% of patients with acute myeloid leukemia. Here, we investigated whether hotspot mutations in these genes encode neoantigens that can be targeted by immunotherapy. Five human B-lymphoblastoid cell lines expressing common HLA class I alleles were transduced with a minigene construct containing mutations that often occur in DNMT3A or IDH1/2. From these minigene-transduced cell lines, peptides were eluted from HLA class I alleles and analyzed using tandem mass spectrometry. The resulting data are available via ProteomeXchange under the identifier PXD050560. Mass spectrometry revealed an HLA-A*01:01-binding DNMT3AR882H peptide and an HLA-B*07:02-binding IDH2R140Q peptide as potential neoantigens. For these neopeptides, peptide-HLA tetramers were produced to search for specific T-cells in healthy individuals. Various T-cell clones were isolated showing specific reactivity against cell lines transduced with full-length DNMT3AR882H or IDH2R140Q genes, while cell lines transduced with wildtype genes were not recognized. One T-cell clone for DNMT3AR882H also reacted against patient-derived acute myeloid leukemia cells with the mutation, while patient samples without the mutation were not recognized, thereby validating the surface presentation of a DNMT3AR882H neoantigen that can potentially be targeted in acute myeloid leukemia via immunotherapy.
    Keywords:  DNA methyltransferase 3A; T-cell therapy; acute myeloid leukemia; cancer immunotherapy; hotspot mutation; isocitrate dehydrogenase 2; neoantigen
    DOI:  https://doi.org/10.3390/biomedicines12051086
  24. J Exp Clin Cancer Res. 2024 May 21. 43(1): 147
      A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.
    Keywords:  CAR-T; Chemotherapy resistance; Immune evasion; Metabolic symbiosis; Mitochondrial transfer; Oxidative phosphorylation; Tunneling nanotubes
    DOI:  https://doi.org/10.1186/s13046-024-03069-w
  25. iScience. 2024 Jun 21. 27(6): 109853
      The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an in-silico-to-in-vitro approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site. NADH displacement results in mitochondrial distress and reduced cell proliferation, especially when compared to non-cancerous cells. Experiments performed on organoids derived from intrahepatic cholangiocarcinoma patients demonstrated a dose-dependent reduction in cell viability upon treatment with VA molecules with lower impact on healthy cells than conventional treatments like gemcitabine. VA molecules are chemical entities representing promising candidates for further optimization and development as cancer therapy strategies through precise metabolic interventions.
    Keywords:  Functional aspects of cell biology; Molecular medicine; Small molecule
    DOI:  https://doi.org/10.1016/j.isci.2024.109853
  26. J Lipid Res. 2024 May 17. pii: S0022-2275(24)00068-3. [Epub ahead of print] 100563
      Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and Mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization-high resolution mass spectrometry to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts (MEFs) knocked out for OPA1 and Mfn1/2 genes. 167 different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PC, 63), phosphatidylethanolamines (PE, 55), phosphatidylinositols (PI, 21) and cardiolipins (CL, 28). A slight decrease in the CL/PC ratio was found for Mfn1/2-knock out mitochondria. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were subsequently used to further process HILIC-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and PE classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to wild-type MEFs. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially mitofusins, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes (MAMs).
    Keywords:  OPA1; glycerophospholipids; high resolution mass spectrometry; hydrophilic interaction liquid chromatography; lipidomics; mitochondria; mitofusins; mouse embryonic fibroblasts; phospholipids; phospholipids/biosynthesis
    DOI:  https://doi.org/10.1016/j.jlr.2024.100563