bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023–12–10
twenty papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. FEBS Lett. 2023 Dec 06.
      Since its discovery, a major debate about mitochondrial uncoupling protein 3 (UCP3) has been whether its metabolic actions result primarily from mitochondrial inner membrane proton transport, a process that decreases respiratory efficiency and ATP synthesis. However, UCP3 expression and activity are induced by conditions that would seem at odds with inefficient "uncoupled" respiration, including fasting and exercise. Here we demonstrate that the bacterially expressed human UCP3, reconstituted into liposomes, catalyses a strict exchange of aspartate, malate, oxaloacetate, and phosphate. The R282Q mutation abolishes the transport activity of the protein. Although the substrate specificity and inhibitor sensitivity of UCP3 display similarity with that of its close homolog UCP2, the two proteins significantly differ in their transport mode and kinetic constants.
    Keywords:  amino acid transport; anion transport; bioenergetics; mitochondrial metabolism; mitochondrial transport; uncoupling protein
    DOI:  https://doi.org/10.1002/1873-3468.14784
  2. Cell Rep. 2023 Dec 01. pii: S2211-1247(23)01530-9. [Epub ahead of print]42(12): 113518
      The dysfunction and clonal constriction of tumor-infiltrating CD8+ T cells are accompanied by alterations in cellular metabolism; however, how the cell-intrinsic metabolic pathway specifies intratumoral CD8+ T cell features remains elusive. Here, we show that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) contributes to the maintenance of intratumoral CD8+ T cell metabolic and functional fitness. De novo NAD+ synthesis is involved in CD8+ T cell metabolism and antitumor function. KP-derived NAD+ promotes PTEN deacetylation, thereby facilitating PTEN degradation and preventing PTEN-dependent metabolic defects. Importantly, impaired cell-autonomous NAD+ synthesis limits CD8+ T cell responses in human colorectal cancer samples. Our results reveal that KP-derived NAD+ regulates the CD8+ T cell metabolic and functional state by restricting PTEN activity and suggest that modulation of de novo NAD+ synthesis could restore CD8+ T cell metabolic fitness and antitumor function.
    Keywords:  CP: Cancer; CP: Metabolism
    DOI:  https://doi.org/10.1016/j.celrep.2023.113518
  3. J Physiol. 2023 Dec 05.
      The impact of training status and sex on intrinsic skeletal muscle mitochondrial respiratory capacity remains unclear. We examined this by analysing human skeletal muscle mitochondrial respiration relative to mitochondrial volume and cristae density across training statuses and sexes. Mitochondrial cristae density was estimated in skeletal muscle biopsies originating from previous independent studies. Participants included females (n = 12) and males (n = 41) across training statuses ranging from untrained (UT, n = 8), recreationally active (RA, n = 9), active-to-elite runners (RUN, n = 27) and cross-country skiers (XC, n = 9). The XC and RUN groups demonstrated higher mitochondrial volume density than the RA and UT groups while all active groups (RA, RUN and XC) displayed higher mass-specific capacity of oxidative phosphorylation (OXPHOS) and mitochondrial cristae density than UT. Differences in OXPHOS diminished between active groups and UT when normalising to mitochondrial volume density and were lost when normalising to muscle cristae surface area density. Moreover, active females (n = 6-9) and males (n = 15-18) did not differ in mitochondrial volume and cristae density, OXPHOS, or when normalising OXPHOS to mitochondrial volume density and muscle cristae surface area density. These findings demonstrate: (1) differences in OXPHOS between active and untrained individuals may be explained by both higher mitochondrial volume and cristae density in active individuals, with no difference in intrinsic mitochondrial respiratory capacity (OXPHOS per muscle cristae surface area density); and (2) no sex differences in mitochondrial volume and cristae density or mass-specific and normalised OXPHOS. This highlights the importance of normalising OXPHOS to muscle cristae surface area density when studying skeletal muscle mitochondrial biology. KEY POINTS: Oxidative phosphorylation is the mitochondrial process by which ATP is produced, governed by the electrochemical gradient across the inner mitochondrial membrane with infoldings named cristae. In human skeletal muscle, the mass-specific capacity of oxidative phosphorylation (OXPHOS) can change independently of shifts in mitochondrial volume density, which may be attributed to variations in cristae density. We demonstrate that differences in skeletal muscle OXPHOS between healthy females and males, ranging from untrained to elite endurance athletes, are matched by differences in cristae density. This suggests that higher OXPHOS in skeletal muscles of active individuals is attributable to an increase in the density of cristae. These findings broaden our understanding of the variability in human skeletal muscle OXPHOS and highlight the significance of cristae, specific to mitochondrial respiration.
    Keywords:  intrinsic mitochondrial respiratory capacity; mitochondria; mitochondrial cristae density; oxidative phosphorylation; sex; skeletal muscle; training status
    DOI:  https://doi.org/10.1113/JP285091
  4. Free Radic Biol Med. 2023 Dec 04. pii: S0891-5849(23)01142-5. [Epub ahead of print]
      Selenite as an inorganic form of selenium can affect the redox state of mitochondria by modifying the thiol groups of cysteines. The F1FO-ATPase has been identified as a mitochondrial target of this compound. Indeed, the bifunctional mechanism of ATP turnover of F1FO-ATPase was differently modified by selenite. The activity of ATP hydrolysis was stimulated, whereas the ADP phosphorylation was inhibited. We ascertain that a possible new protein adduct identified as seleno-dithiol (-S-Se-S-) mercaptoethanol-sensitive caused the activation of F-ATPase activity and the oxidation of free -SH groups in mitochondria. Conversely, the inhibition of ATP synthesis by selenite might be irreversible. The kinetic analysis of the activation mechanism was an uncompetitive mixed type with respect to the ATP substrate. Selenite bound more selectively to the F1FO-ATPase loaded with the substrate by preferentially forming a tertiary (enzyme-ATP-selenite) complex. Otherwise, the selenite was a competitive mixed-type activator with respect to the Mg2+ cofactor. Thus, selenite more specifically bound to the free enzyme forming the complex enzyme-selenite. However, even if the selenite impaired the catalysis of F1FO-ATPase, the mitochondrial permeability transition pore phenomenon was unaffected. Therefore, the reversible energy transduction mechanism of F1FO-ATPase can be oppositely regulated by selenite.
    Keywords:  F(1)F(O)-ATPase; Mitochondria; Oxidative phosphorylation; Selenite; Thiol groups
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.11.041
  5. ACS Chem Biol. 2023 Dec 06.
      A major impediment to the characterization of mtDNA repair mechanisms in comparison to nuclear DNA repair mechanisms is the difficulty of specifically addressing mitochondrial damage. Using a mitochondria-penetrating peptide, we can deliver DNA-damaging agents directly to mitochondria, bypassing the nuclear compartment. Here, we describe the use of an mtDNA-damaging agent in tandem with CRISPR/Cas9 screening for the genome-wide discovery of factors essential for mtDNA damage response. Using mitochondria-targeted doxorubicin (mtDox), we generate mtDNA double-strand breaks (mtDSBs) specifically in this organelle. Combined with an untargeted doxorubicin (Dox) screen, we identify genes with significantly greater essentiality during mitochondrial versus nuclear DNA damage. We characterize the essentiality of our top hit, WRNIP1─observed here for the first time to respond to mtDNA damage. We further investigate the mitochondrial role of WRNIP1 in innate immune signaling and nuclear genome maintenance, outlining a model that experimentally supports mitochondrial turnover in response to mtDSBs.
    DOI:  https://doi.org/10.1021/acschembio.3c00620
  6. FEBS Open Bio. 2023 Dec 04.
      Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.
    Keywords:  ATP; glucose-deprivation; hepatocyte; live-cell imaging; mitochondria
    DOI:  https://doi.org/10.1002/2211-5463.13744
  7. Sci Adv. 2023 Dec 08. 9(49): eadf9522
      Mitochondria use different substrates for energy production and intermediatory metabolism according to the availability of nutrients and oxygen levels. The role of mitochondrial metabolic flexibility for CD8+ T cell immune response is poorly understood. Here, we report that the deletion or pharmacological inhibition of protein tyrosine phosphatase, mitochondrial 1 (PTPMT1) significantly decreased CD8+ effector T cell development and clonal expansion. In addition, PTPMT1 deletion impaired stem-like CD8+ T cell maintenance and accelerated CD8+ T cell exhaustion/dysfunction, leading to aggravated tumor growth. Mechanistically, the loss of PTPMT1 critically altered mitochondrial fuel selection-the utilization of pyruvate, a major mitochondrial substrate derived from glucose-was inhibited, whereas fatty acid utilization was enhanced. Persistent mitochondrial substrate shift and metabolic inflexibility induced oxidative stress, DNA damage, and apoptosis in PTPMT1 knockout cells. Collectively, this study reveals an important role of PTPMT1 in facilitating mitochondrial utilization of carbohydrates and that mitochondrial flexibility in energy source selection is critical for CD8+ T cell antitumor immunity.
    DOI:  https://doi.org/10.1126/sciadv.adf9522
  8. Arch Pharm Res. 2023 Dec 04.
      Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.
    Keywords:  Glutamine; Glycolysis; Lactate; MCT1; Tamoxifen resistance
    DOI:  https://doi.org/10.1007/s12272-023-01474-x
  9. bioRxiv. 2023 Nov 22. pii: 2023.11.22.568285. [Epub ahead of print]
      Mitochondrial (MT) mutations serve as natural genetic markers for inferring clonal relationships using single cell sequencing data. However, the fundamental challenge of MT mutation-based lineage tracing is automated identification of informative MT mutations. Here, we introduced an open-source computational algorithm called "MitoTracer", which accurately identified clonally informative MT mutations and inferred evolutionary lineage from scRNA-seq or scATAC-seq samples. We benchmarked MitoTracer using the ground-truth experimental lineage sequencing data and demonstrated its superior performance over the existing methods measured by high sensitivity and specificity. MitoTracer is compatible with multiple single cell sequencing platforms. Its application to a cancer evolution dataset revealed the genes related to primary BRAF-inhibitor resistance from scRNA-seq data of BRAF-mutated cancer cells. Overall, our work provided a valuable tool for capturing real informative MT mutations and tracing the lineages among cells.
    Teaser: MitoTracer enables automatically and accurately discover informative mitochondrial mutations for lineage tracing.
    DOI:  https://doi.org/10.1101/2023.11.22.568285
  10. Nat Cell Biol. 2023 Dec 04.
      Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.
    DOI:  https://doi.org/10.1038/s41556-023-01274-x
  11. Sci Adv. 2023 Dec 08. 9(49): eadi2465
      Adenosine 5'-triphosphate citrate lyase (ACLY) is a cytosolic enzyme that converts citrate into acetyl-coenzyme A for fatty acid and cholesterol biosynthesis. ACLY is up-regulated or activated in many cancers, and targeting ACLY by inhibitors holds promise as potential cancer therapy. However, the role of ACLY in cancer immunity regulation remains poorly understood. Here, we show that ACLY inhibition up-regulates PD-L1 immune checkpoint expression in cancer cells and induces T cell dysfunction to drive immunosuppression and compromise its antitumor effect in immunocompetent mice. Mechanistically, ACLY inhibition causes polyunsaturated fatty acid (PUFA) peroxidation and mitochondrial damage, which triggers mitochondrial DNA leakage to activate the cGAS-STING innate immune pathway. Pharmacological and genetic inhibition of ACLY overcomes cancer resistance to anti-PD-L1 therapy in a cGAS-dependent manner. Furthermore, dietary PUFA supplementation mirrors the enhanced efficacy of PD-L1 blockade by ACLY inhibition. These findings reveal an immunomodulatory role of ACLY and provide combinatorial strategies to overcome immunotherapy resistance in tumors.
    DOI:  https://doi.org/10.1126/sciadv.adi2465
  12. J Leukoc Biol. 2023 Dec 06. pii: qiad155. [Epub ahead of print]
      Pharmacological methods for promoting mitochondrial elongation suggest that effector T cells can be altered to support a memory T cell-like metabolic state. Such mitochondrial elongation approaches may enhance the development of immunological memory. Therefore, we hypothesized that deletion of the mitochondrial fission protein, DRP1, would lead to mitochondrial elongation and generate a large memory T cell population, an approach that could be exploited to enhance vaccination protocols. We find that, as expected, while deletion of DRP1 from T cells in dLckCre x Drp1flfl does compromise the magnitude and functionality of primary effector CD8+ T cells, a disproportionately large pool of memory CD8+ T cells does form. In contrast to primary effector CD8+ T cells, DRP1-deficient memory dLckCre x Drp1flfl CD8+ T cells mount a secondary response comparable to control memory T cells with respect to kinetics, magnitude, and effector capabilities. Interestingly, the relative propensity to form memory cells in the absence of DRP1 was neither associated with differentiation toward more memory precursor CD8+ T cells nor decreased cellular death of effector T cells. Instead, the tendency to form memory CD8+ T cells in the absence of DRP1 is associated with decreased TCR expression. Remarkably, in a competitive environment with DRP1-replete CD8+ T cells, the absence of DRP1 from CD8+ T cells compromised the generation of primary, memory and secondary responses, indicating that approaches targeting DRP1 need to be carefully tailored.
    Keywords:  CD8+ T cell; Cell Death; Cytokine; Differentiation; Memory T cell; Metabolism; Mitochondria; T cell receptor
    DOI:  https://doi.org/10.1093/jleuko/qiad155
  13. Eur J Med Chem. 2023 Nov 25. pii: S0223-5234(23)00962-5. [Epub ahead of print]264 115995
      Hepatocellular carcinoma (HCC) is a major contributor to global mortality rates, but current treatment options have limitations. Advanced theranostics are needed to effectively integrate diagnosis and therapeutic of HCC. Glycyrrhetinic acid (GA) has abundant binding sites with glycyrrhetinic acid receptors (GA-Rs) on the surface of HCC cells and has also been reported to possess ligands with mitochondrial-targeting capability but with limited efficacy. Herein, we report a near-infrared (NIR) luminescent theranostic complex 1 through conjugating an iridium(III) complex to GA, which exhibits the desired photophysical properties and promotes mitochondrial-targeting capability. Complex 1 was selectively taken up by HepG2 liver cancer cells and was imaged within mitochondria with NIR emission. Complex 1 targeted mitochondria and opened mitochondrial permeability transition pores (MPTPs), resulting in ROS accumulation, mitochondrial damage, disruption of Bax/Bcl-2 equilibrium, and tumor cell apoptosis, resulting in significantly improved anticancer activity compared to GA. This work offers a methodology for developing multifunctional theranostic probes with amplified specificity and efficacy.
    Keywords:  Glycyrrhetinic acid (GA); Hepatocellular carcinoma; Iridium(III) complex; Mitochondrial targeting; NIR imaging; Theranostic
    DOI:  https://doi.org/10.1016/j.ejmech.2023.115995
  14. Cancer Res Commun. 2023 Dec 05.
      Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein NMR studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2- and 6-fold higher affinity than to KRAS G12V, KRAS wild-type and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pull-down and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from pancreatic cancer patients whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiation therapy. These results warrant further development of KRB-456 for pancreatic cancer.
    DOI:  https://doi.org/10.1158/2767-9764.CRC-23-0222
  15. Cell Signal. 2023 Dec 02. pii: S0898-6568(23)00419-9. [Epub ahead of print] 111004
      Acute myeloid leukemia (AML) is a type of blood cancer that is characterized by the rapid growth of abnormal myeloid cells. The goal of AML treatment is to eliminate the leukemic blasts, which is accomplished through intensive chemotherapy. Cytarabine is a key component of the standard induction chemotherapy regimen for AML. However, despite a high remission rate, 70-80% of AML patients relapse and develop resistance to Cytarabine, leading to poor clinical outcomes. Mitocurcumin (MitoC), a derivative of curcumin that enters mitochondria, leading to a drop in mitochondrial membrane potential and mitophagy induction. Further, it activates oxidative stress-mediated JNK/p38 signaling to induce apoptosis. MitoC demonstrated a preferential ability to kill leukemic cells from AML cell lines and patient-derived leukemic blasts. RNA sequencing data suggests perturbation of DNA damage response and cell proliferation pathways in MitoC-treated AML. Elevated reactive oxygen species (ROS) in MitoC-treated AML cells resulted in significant DNA damage and cell cycle arrest. Further, MitoC treatment resulted in ROS-mediated enhanced levels of p21, which leads to suppression of CHK1, RAD51, Cyclin-D and c-Myc oncoproteins, potentially contributing to cytarabine resistance. Combinatorial treatment of MitoC and Cytarabine has shown synergism, increased apoptosis, and enhanced DNA damage. Using AML xenografts, a significant reduction of hCD45+ cells was observed in AML mice bone marrow treated with MitoC (mean 0.6%; range0.04%-3.56%) compared to control (mean 38.2%; range10.1%-78%), p = 0.03. The data suggest that MitoC exploits stress-induced leukemic oxidative environment to up-regulate JNK/p38 signaling to lead to apoptosis and can potentially overcome cytarabine resistance via ROS/p21/CHK1 axis.
    Keywords:  Acute myeloid leukemia; Cytarabine resistance; JNK; Mitocurcumin; Oxidative stress
    DOI:  https://doi.org/10.1016/j.cellsig.2023.111004
  16. Blood Adv. 2023 Dec 05. pii: bloodadvances.2023011721. [Epub ahead of print]
      CD123, a subunit of the interleukin-3 receptor, is expressed on ~80% of acute myeloid leukemias (AMLs). Tagraxofusp (TAG), recombinant interleukin-3 fused to a truncated diphtheria toxin payload, is a first-in-class drug targeting CD123 approved for treatment of blastic plasmacytoid dendritic cell neoplasm. We previously found that AMLs with acquired resistance to TAG were re-sensitized by the DNA hypomethylating agent azacitidine (AZA) and that TAG-exposed cells became more dependent on the anti-apoptotic molecule BCL-2. Here, we report a phase 1b study in 56 adults with CD123-positive AML or high-risk myelodysplastic syndrome (MDS), first combining TAG with AZA in AML/MDS, and subsequently TAG, AZA, and the BCL-2 inhibitor venetoclax (VEN) in AML. Adverse events with 3-day TAG dosing were as expected, without indication of increased toxicity of TAG or AZA+/-VEN in combination. The recommended phase 2 dose of TAG was 12 ug/kg/day for 3 days, with 7-day AZA +/- 21-day VEN. In an expansion cohort of 26 patients (median age 71) with previously untreated European LeukemiaNet (ELN) adverse-risk AML (50% TP53 mutated), triplet TAG-AZA-VEN induced response in 69% (n=18/26; 39% CR, 19% CRi, 12% MLFS). Among 13 patients with TP53 mutations, 7/13 (54%) achieved CR/CRi/MLFS (CR=4, CRi=2, MLFS=1). Twelve of 17 (71%) tested responders had no flow measurable residual disease (MRD). Median overall survival and progression-free survival were 14 months (95% CI, 9.5-NA) and 8.5 months (95% CI, 5.1-NA), respectively. In summary, TAG-AZA-VEN shows encouraging safety and activity in high-risk AML, including TP53-mutated disease, supporting further clinical development of TAG combinations.
    DOI:  https://doi.org/10.1182/bloodadvances.2023011721
  17. Leukemia. 2023 Dec 06.
      Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.
    DOI:  https://doi.org/10.1038/s41375-023-02103-8