bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023‒11‒05
23 papers selected by
Kelsey Fisher-Wellman, East Carolina University

  1. J Biol Chem. 2023 Oct 26. pii: S0021-9258(23)02427-4. [Epub ahead of print] 105399
      Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.
  2. Oncogene. 2023 Oct 31.
      Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.
  3. Nat Rev Cancer. 2023 Oct 31.
      Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.
  4. Cancer Res. 2023 Oct 31.
      Approximately one-third of endocrine-treated women with estrogen receptor-alpha positive (ER+) breast cancers (BC) are at risk of recurrence due to intrinsic or acquired resistance. Thus, it is vital to understand the mechanisms underlying endocrine therapy resistance in ER+ BC to improve patient treatment. Mitochondrial fatty acid β-oxidation (FAO) has been shown to be a major metabolic pathway in triple-negative BC (TNBC) that can activate Src signaling. Here, we found metabolic reprogramming that increases FAO in ER+ BC as a mechanism of resistance to endocrine therapy. A metabolically relevant, integrated gene signature was derived from transcriptomic, metabolomic, and lipidomic analyses in TNBC cells following inhibition of the FAO rate-limiting enzyme carnitine palmitoyl transferase 1 (CPT1), and this TNBC-derived signature was significantly associated with endocrine resistance in ER+ BC patients. Molecular, genetic, and metabolomic experiments identified activation of AMPK-FAO-oxidative phosphorylation (OXPHOS) signaling in endocrine-resistant ER+ BC. CPT1 knockdown or treatment with FAO inhibitors in vitro and in vivo significantly enhanced the response of ER+ BC cells to endocrine therapy. Consistent with the previous findings in TNBC, endocrine therapy-induced FAO activated the Src pathway in ER+ BC. Src inhibitors suppressed the growth of endocrine-resistant tumors, and the efficacy could be further enhanced by metabolic priming with CPT1 inhibition. Collectively, this study developed and applied a TNBC-derived signature to reveal that metabolic reprogramming to FAO activates the Src pathway to drive endocrine resistance in ER+ BC.
  5. Anal Chem. 2023 Oct 31.
      Studying metabolism may assist in understanding the relationship between normal and dysfunctional mitochondrial activity and various diseases, such as neurodegenerative, cardiovascular, autoimmune, psychiatric, and cancer. Nuclear magnetic resonance-based metabolomics represents a powerful method to characterize the chemical content of complex samples and has been successfully applied to studying a range of conditions. However, an optimized methodology is lacking for analyzing isolated organelles, such as mitochondria. In this study, we report the development of a protocol to metabolically profile mitochondria from healthy, tumoral, and metastatic tissues. Encouragingly, this approach provided quantitative information about up to 45 metabolites in one comprehensive and robust analysis. Our results revealed significant differences between whole-cell and mitochondrial metabolites, which supports a more refined approach to metabolic analysis. We applied our optimized methodology to investigate aggressive and metastatic breast cancer in mouse tissues, discovering that lung mitochondria exhibit an altered metabolic fingerprint. Specific amino acids, organic acids, and lipids showed significant increases in levels when compared with mitochondria from healthy tissues. Our optimized methodology could promote a better understanding of the molecular mechanisms underlying breast cancer aggressiveness and mitochondrial-related diseases and support the optimization of new advanced therapies.
  6. Blood Adv. 2023 Oct 31. pii: bloodadvances.2023010786. [Epub ahead of print]
      Cysteine is a non-essential amino acid required for protein synthesis, the generation of the anti-oxidant glutathione and for synthesizing the non-proteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/Cas9-mediated knockout of cystathionine-γ-Lysase (CTH), the cystathionine to cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, while perhaps nutritionally non-essential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels and cell death was induced predominantly as a consequence of glutathione deprivation. NADPH oxidase (NOX) inhibition strongly rescued viability following cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of GPX4, which functions to reduce lipid peroxides, was also highly toxic and we therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with Auranofin also impaired cell viability, whereby we find that in particular OXPHOS-driven AML subtypes are highly dependent on thioredoxin-mediated protection against ferroptosis. While inhibition of the cystine importer xCT with Sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either Sulfasalazine or anti-oxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further pre-clinical testing.
  7. Cancer Res. 2023 11 01. 83(21): 3493-3494
      Recently, fasting-mimicking diet and caloric restriction have been shown to improve antitumor immunity. In this issue of Cancer Research, Zhong and colleagues provide insights into the molecular mechanism of fasting-mimicking diet-mediated metabolic reprogramming in colorectal cancer progression. The authors performed comprehensive mechanistic experiments in mouse models to show that fasting-mimicking diet prevents colorectal cancer progression by lowering intratumoral IgA+ B cells by accelerating fatty acid oxidation to inhibit B-cell IgA class switching. In addition, they found that fatty acid oxidation-dependent acetylation prevents IgA class switching and that IgA+ B cells interfere with the anticancer effects of fasting-mimicking diet in colorectal cancer. Overall, their study establishes that fasting-mimicking diet has the potential to activate anticancer immunity and to induce tumor regression in colorectal cancer. See related article by Zhong et al., p. 3529.
  8. bioRxiv. 2023 Oct 20. pii: 2023.10.19.563195. [Epub ahead of print]
      Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.
  9. Science. 2023 Nov 02. eadf4154
      Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. We focused on glutathione (GSH), a critical redox metabolite in mitochondria and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by a mitochondrial protease, AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analysis identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 to be essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.
  10. Nat Metab. 2023 Oct 30.
      Senescent cells remain metabolically active, but their metabolic landscape and resulting implications remain underexplored. Here, we report upregulation of pyruvate dehydrogenase kinase 4 (PDK4) upon senescence, particularly in some stromal cell lines. Senescent cells display a PDK4-dependent increase in aerobic glycolysis and enhanced lactate production but maintain mitochondrial respiration and redox activity, thus adopting a special form of metabolic reprogramming. Medium from PDK4+ stromal cells promotes the malignancy of recipient cancer cells in vitro, whereas inhibition of PDK4 causes tumor regression in vivo. We find that lactate promotes reactive oxygen species production via NOX1 to drive the senescence-associated secretory phenotype, whereas PDK4 suppression reduces DNA damage severity and restrains the senescence-associated secretory phenotype. In preclinical trials, PDK4 inhibition alleviates physical dysfunction and prevents age-associated frailty. Together, our study confirms the hypercatabolic nature of senescent cells and reveals a metabolic link between cellular senescence, lactate production, and possibly, age-related pathologies, including but not limited to cancer.
  11. Nutr Rev. 2023 Oct 31. pii: nuad130. [Epub ahead of print]
      Cancer is a mysterious disease. Among other alterations, tumor cells, importantly, have metabolic modifications. A well-known metabolic modification commonly observed in cancer cells has been termed the Warburg effect. This phenomenon is defined as a high preference for glucose uptake, and increased lactate production from that glucose, even when oxygen is readily available. Some anti-cancer drugs target the proposed Warburg effect, and some dietary regimens can function similarly. However, the most suitable dietary strategies for treating particular cancers are not yet well understood. The aim of this review was to describe findings regarding the impact of various proposed dietary regimens targeting the Warburg effect. The evidence suggests that combining routine cancer therapies with diet-based strategies may improve the outcome in treating cancer. However, designing individualized therapies must be our ultimate goal.
    Keywords:  OXPHOS; cancer; diet; glycolysis; oxidative phosphorylation; the Warburg effect
  12. iScience. 2023 Nov 17. 26(11): 108168
      Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I-V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation.
    Keywords:  Cell biology; Molecular biology; Omics; Transcriptomics
  13. Cell Death Dis. 2023 Oct 30. 14(10): 708
      Lymph node metastasis (LNM) is the prominent route of gastric cancer dissemination, and usually leads to tumor progression and a dismal prognosis of gastric cancer. Although exosomal lncRNAs have been reported to be involved in tumor development, whether secreted lncRNAs can encode peptides in recipient cells remains unknown. Here, we identified an exosomal lncRNA (lncAKR1C2) that was clinically correlated with lymph node metastasis in gastric cancer in a VEGFC-independent manner. Exo-lncAKR1C2 secreted from gastric cancer cells was demonstrated to enhance tube formation and migration of lymphatic endothelial cells, and facilitate lymphangiogenesis and lymphatic metastasis in vivo. By comparing the metabolic characteristics of LN metastases and primary focuses, we found that LN metastases of gastric cancer displayed higher lipid metabolic activity. Moreover, exo-lncAKR1C2 encodes a microprotein (pep-AKR1C2) in lymphatic endothelial cells and promotes CPT1A expression by regulating YAP phosphorylation, leading to enhanced fatty acid oxidation (FAO) and ATP production. These findings highlight a novel mechanism of LNM and suggest that the microprotein encoded by exosomal lncAKR1C2 serves as a therapeutic target for advanced gastric cancer.
  14. FASEB J. 2023 Dec;37(12): e23280
      The development of high-resolution respirometry (HRR) has greatly expanded the analytical scope to study mitochondrial respiratory control relative to specific tissue/cell types across various metabolic states. Specifically, the Oroboros Oxygraph 2000 (O2k) is a common tool for measuring rates of mitochondrial respiration and is the focus of this perspective. The O2k platform is amenable for answering numerous bioenergetic questions. However, inherent variability with HRR-derived data, both within and amongst users, can impede progress in bioenergetics research. Therefore, we advocate for several vital considerations when planning and conducting O2k experiments to ultimately enhance transparency and reproducibility across laboratories. In this perspective, we offer guidance for best practices of mitochondrial preparation, protocol selection, and measures to increase reproducibility. The goal of this perspective is to propagate the use of the O2k, enhance reliability and validity for both new and experienced O2k users, and provide a reference for peer reviewers.
    Keywords:  Oroboros O2k; bioenergetics; isolated mitochondria; mitochondria; permeabilized fibers; protocol development
  15. Nat Cancer. 2023 Oct 30.
      Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.
  16. Exp Cell Res. 2023 Oct 30. pii: S0014-4827(23)00381-6. [Epub ahead of print] 113830
      Many cancer cells exhibit enhanced glycolysis, which is seen as one of the hallmark metabolic alterations, known as Warburg effect. Substantial evidence shows that upregulated glycolytic enzymes are often linked to malignant growth. Using glycolytic inhibitors for anticancer treatment has become appealing in recent years for therapeutic intervention in cancers with highly glycolytic characteristic, including non-small cell lung cancer (NSCLC). In this work, we studied the anticancer effects and the underlying mechanisms of combination of benzerazide hydrocholoride (Benz), a hexokinase 2 (HK2) inhibitor and 64, a pyruvate dehydrogenase kinase 1 (PDK1) inhibitor, in several NSCLC cell lines. We found that combination of Benz and 64 exhibited strong synergistic anticancer effects in NCI-H1975, HCC827, NCI-H1299 and SK-LU-1 cell lines. With this combination treatment, we observed changes of certain mechanistic determinants associated with metabolic stress caused by glycolysis restriction, such as mitochondrial membrane potential depolarization, overproduction of reactive oxygen species [1], activation of AMPK and down-regulation of mTOR, which contributed to enhanced apoptosis. Moreover, Benz and 64 together significantly suppressed the tumor growth in HCC827 cell mouse xenograft model. Taken together, our study may suggest that combined inhibition of HK2 and PDK1 using Benz and 64 could be a viable anticancer strategy for NSCLC.
    Keywords:  Cancer metabolism; Combination therapy; HK2; NSCLC; PDK1
  17. Trends Cell Biol. 2023 Oct 31. pii: S0962-8924(23)00207-6. [Epub ahead of print]
      Stem cells persist throughout the lifespan to repair and regenerate tissues due to their unique ability to self-renew and differentiate. Here we reflect on the recent discoveries in stem cells that highlight a mitochondrial metabolic checkpoint at the restriction point of the stem cell cycle. Mitochondrial activation supports stem cell proliferation and differentiation by providing energy supply and metabolites as signaling molecules. Concomitant mitochondrial stress can lead to loss of stem cell self-renewal and requires the surveillance of various mitochondrial quality control mechanisms. During aging, a mitochondrial protective program mediated by several sirtuins becomes dysregulated and can be targeted to reverse stem cell aging and tissue degeneration, giving hope for targeting the mitochondrial metabolic checkpoint for treating tissue degenerative diseases.
    Keywords:  NAD; NLRP3; SIRT2; SIRT3; SIRT7; aging
  18. Nat Chem Biol. 2023 Oct 30.
      Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.
  19. Cell Metab. 2023 Oct 20. pii: S1550-4131(23)00377-7. [Epub ahead of print]
      The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma β-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma β-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.
    Keywords:  GDF-15; NAD+; NADH; NAFLD; NASH; ketogenic diet; mitochondrial dysfunction; patatin-like phospholipase domain containing protein 3; redox; reductive stress
  20. Mol Oncol. 2023 Oct 29.
      During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients. We previously demonstrated that Th17 cells are associated with therapy resistance as well as cervical cancer metastases and relapse; however, the underlying Th17-driven mechanisms are not fully understood. Here, using microarrays, we found that Th17 cells induced an epithelial-to-mesenchymal transition (EMT) phenotype of cervical cancer cells, and promoted migration and invasion of 2D cultures and 3D spheroids via induction of microRNA miR-142-5p. As the responsible mechanism, we identified the subunits C and D of the succinate dehydrogenase (SDH) complex as new targets of miR-142-5p and provided evidence that Th17-miR-142-5p-dependent reduced expression of SDHC and SDHD mediated enhanced migration and invasion of cancer cells using small interfering RNAs (siRNAs) for SDHC and SDHD, and miR-142-5p inhibitors. Consistently, patients exhibited high levels of succinate in their serum associated with lymph node metastases, and diminished expression of SDHD in patient biopsies correlated with increased numbers of Th17 cells. Correspondingly, a combination of weak or negative SDHD expression and a ratio of Th17/CD4+ T cells >43.90% in situ was associated with reduced recurrence-free survival. In summary, we unraveled a previously unknown molecular mechanism by which Th17 cells promote cervical cancer progression, and suggest evaluation of Th17 cells as a potential target for immunotherapy in cervical cancer.
    Keywords:  T-helper-17 cells; cervical cancers; metastases; miR-142-5p; succinate dehydrogenase complex
  21. Sci Transl Med. 2023 Nov;15(720): eadg3049
      Lipid peroxidation-dependent ferroptosis has become an emerging strategy for tumor therapy. However, current strategies not only selectively induce ferroptosis in malignant cells but also trigger ferroptosis in immune cells simultaneously, which can compromise anti-tumor immunity. Here, we used In-Cell Western assays combined with an unbiased drug screening to identify the compound N6F11 as a ferroptosis inducer that triggered the degradation of glutathione peroxidase 4 (GPX4), a key ferroptosis repressor, specifically in cancer cells. N6F11 did not cause the degradation of GPX4 in immune cells, including dendritic, T, natural killer, and neutrophil cells. Mechanistically, N6F11 bound to the RING domain of E3 ubiquitin ligase tripartite motif containing 25 (TRIM25) in cancer cells to trigger TRIM25-mediated K48-linked ubiquitination of GPX4, resulting in its proteasomal degradation. Functionally, N6F11 treatment caused ferroptotic cancer cell death that initiated HMGB1-dependent antitumor immunity mediated by CD8+ T cells. N6F11 also sensitized immune checkpoint blockade that targeted CD274/PD-L1 in advanced cancer models, including genetically engineered mouse models of pancreatic cancer driven by KRAS and TP53 mutations. These findings may establish a safe and efficient strategy to boost ferroptosis-driven antitumor immunity.
  22. Biochim Biophys Acta Mol Cell Res. 2023 Oct 26. pii: S0167-4889(23)00188-X. [Epub ahead of print] 119615
    Keywords:  CG4994; CG9090; Drosophila melanogaster; Mitochondrial phosphate carrier; OXPHOS genes; SLC25 solute carrier
  23. Cancer Res. 2023 Nov 03.
      The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is a promising therapeutic target in cancer. MTHFD2 is upregulated across numerous cancer types, promotes growth and metastasis of cancer, and correlates with poorer survival. Recent studies have developed small molecule inhibitors of the isozymes MTHFD2 and MTHFD1 that show promise as anti-cancer agents through different mechanisms. This review discusses the current understanding of the function of MTHFD2 in cancer and the status of inhibitors for treating MTHFD2-overexpressing cancers.