bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023‒08‒13
25 papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Cancers (Basel). 2023 Jul 25. pii: 3775. [Epub ahead of print]15(15):
      Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
    Keywords:  ATPase inhibitory factor 1; OXPHOS; RNA binding proteins; Warburg effect; cancer; cell death; metabolic reprogramming; metastasis; mitochondrial ATP synthase; mitohormesis
    DOI:  https://doi.org/10.3390/cancers15153775
  2. STAR Protoc. 2023 Aug 07. pii: S2666-1667(23)00404-5. [Epub ahead of print]4(3): 102437
      Triphenylphosphonium (TPP+) compounds like mito-metformin (MMe) target cancer cells by exploiting their hyperpolarized mitochondrial membrane potential. Here, we present a protocol for synthesizing TPP+ analogs with selectivity for mammalian cancer cells, reduced toxicity, and quantifiability using fluorine-19 nuclear magnetic resonance (19F-NMR). We describe steps for treating mammalian cells with mitochondria-targeted compounds, treating and preparing mouse tissue with these compounds, and 19F-NMR detection of MMe analogs in cells and tissue. TPP+-conjugated metformin analogs include para-methoxy (pMeO-MMe) and para-trifluoromethyl MMe (pCF3-MMe) and meta-trifluoromethyl MMe (mCF3-MMe).
    Keywords:  Cancer; Chemistry; Metabolism; Model Organisms; NMR
    DOI:  https://doi.org/10.1016/j.xpro.2023.102437
  3. Sci Signal. 2023 08 08. 16(797): eadk1008
      Fasting activates mTORC2 to stimulate mitochondrial fission and support mitochondrial respiration.
    DOI:  https://doi.org/10.1126/scisignal.adk1008
  4. Cells. 2023 Jul 27. pii: 1950. [Epub ahead of print]12(15):
      The mitochondrial permeability transition pore (mPTP) is a large, weakly selective pore that opens in the mitochondrial inner membrane in response to the pathological increase in matrix Ca2+ concentration. mPTP activation has been implicated as a key factor contributing to stress-induced necrotic and apoptotic cell death. The molecular identity of the mPTP is not completely understood. Both ATP synthase and adenine nucleotide translocase (ANT) have been described as important components of the mPTP. Using a refractive index (RI) imaging approach, we recently demonstrated that the removal of either ATP synthase or ANT eliminates the Ca2+-induced mPTP in experiments with intact cells. These results suggest that mPTP formation relies on the interaction between ATP synthase and ANT protein complexes. To gain further insight into this process, we used RI imaging to investigate mPTP properties in cells with a genetically eliminated C subunit of ATP synthase. These cells also lack ATP6, ATP8, 6.8PL subunits and DAPIT but, importantly, have a vestigial ATP synthase complex with assembled F1 and peripheral stalk domains. We found that these cells can still undergo mPTP activation, which can be blocked by the ANT inhibitor bongkrekic acid. These results suggest that ANT can form the pore independently from the C subunit but still requires the presence of other components of ATP synthase.
    Keywords:  ATP synthase; C subunit of ATP synthase; adenine nucleotide translocase; bongkrekic acid; cyclosporin A; holographic imaging; mitochondria; mitochondrial permeability transition; mitochondrial permeability transition pore; refractive index imaging
    DOI:  https://doi.org/10.3390/cells12151950
  5. J Exp Clin Cancer Res. 2023 Aug 07. 42(1): 196
      BACKGROUND: Genetic and metabolic heterogeneity are well-known features of cancer and tumors can be viewed as an evolving mix of subclonal populations, subjected to selection driven by microenvironmental pressures or drug treatment. In previous studies, anti-VEGF therapy was found to elicit rewiring of tumor metabolism, causing marked alterations in glucose, lactate ad ATP levels in tumors. The aim of this study was to evaluate whether differences in the sensitivity to glucose starvation existed at the clonal level in ovarian cancer cells and to investigate the effects induced by anti-VEGF therapy on this phenotype by multi-omics analysis.METHODS: Clonal populations, obtained from both ovarian cancer cell lines (IGROV-1 and SKOV3) and tumor xenografts upon glucose deprivation, were defined as glucose deprivation resistant (GDR) or glucose deprivation sensitive (GDS) clones based on their in vitro behaviour. GDR and GDS clones were characterized using a multi-omics approach, including genetic, transcriptomic and metabolic analysis, and tested for their tumorigenic potential and reaction to anti-angiogenic therapy.
    RESULTS: Two clonal populations, GDR and GDS, with strikingly different viability following in vitro glucose starvation, were identified in ovarian cancer cell lines. GDR clones survived and overcame glucose starvation-induced stress by enhancing mitochondrial oxidative phosphorylation (OXPHOS) and both pyruvate and lipids uptake, whereas GDS clones were less able to adapt and died. Treatment of ovarian cancer xenografts with the anti-VEGF drug bevacizumab positively selected for GDR clones that disclosed increased tumorigenic properties in NOD/SCID mice. Remarkably, GDR clones were more sensitive than GDS clones to the mitochondrial respiratory chain complex I inhibitor metformin, thus suggesting a potential therapeutic strategy to target the OXPHOS-metabolic dependency of this subpopulation.
    CONCLUSION: A glucose-deprivation resistant population of ovarian cancer cells showing druggable OXPHOS-dependent metabolic traits is enriched in experimental tumors treated by anti-VEGF therapy.
    Keywords:  Anti-angiogenic therapy; Glucose deprivation resistance; Mitochondria; Ovarian cancer; Oxidative phosphorylation
    DOI:  https://doi.org/10.1186/s13046-023-02779-x
  6. Nature. 2023 Aug 09.
      Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1-6. Little is known about the metabolic regulation of the fate of lung epithelial cells. Here we report that deleting the mitochondrial electron transport chain complex I subunit Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 cell features, known as transitional cells. Mammalian mitochondrial complex I, comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ without proton pumping7,8 was sufficient to correct abnormal alveolar development and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued lethality in the absence of mitochondrial complex I function. Notably, lung epithelial-specific loss of mitochondrial electron transport chain complex II subunit Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or lethality. These findings highlight an unanticipated requirement for mitochondrial complex I-dependent NAD+ regeneration in directing cell fate during postnatal alveolar development by preventing pathological ISR induction.
    DOI:  https://doi.org/10.1038/s41586-023-06423-8
  7. Nat Cell Biol. 2023 Aug 10.
      Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.
    DOI:  https://doi.org/10.1038/s41556-023-01198-6
  8. Trends Endocrinol Metab. 2023 Aug 05. pii: S1043-2760(23)00133-9. [Epub ahead of print]
      Epigenetic drugs induce ATP depletion, promoting a glycolysis-to-oxidative phosphorylation (OXPHOS) shift which sometimes favors tumor growth by promoting necroptosis over apoptosis. To restore effective apoptosis in tumors, we propose that the administration of citrate could inhibit ATP production, activate caspase-8 (a key necroptosis inhibitor), and downregulate key anti-apoptotic proteins (Bcl-xL and MCL1).
    Keywords:  Warburg effect; apoptosis; citrate; drug resistance; epigenetic drug; necroptosis
    DOI:  https://doi.org/10.1016/j.tem.2023.07.002
  9. Theranostics. 2023 ;13(12): 4288-4302
      Rationale: As a key endogenous negative regulator of ferroptosis, glutathione peroxidase 4 (GPX4) can regulate its antioxidant function through multiple post-translational modification pathways. However, the effects of the phosphorylation/dephosphorylation status of GPX4 on the regulation of inducible ferroptosis in hepatocellular carcinoma (HCC) remain unclear. Methods: To investigate the effects and molecular mechanism of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells. Sorafenib (Sora) was used to establish the ferroptosis model in HCC cells in vitro. Using the site-directed mutagenesis method, we generated the mimic GPX4 phosphorylation or dephosphorylation HCC cell lines at specific serine sites of GPX4. The effects of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells were examined. The interrelationships among GPX4, p53, and protein phosphatase 2A-B55β subunit (PP2A-B55β) were also explored. To explore the synergistic anti-tumor effects of PP2A activation on Sora-administered HCC, we established PP2A-B55β overexpression xenograft tumors in a nude mice model in vivo. Results: In the Sora-induced ferroptosis model of HCC in vitro, decreased levels of cytoplasmic and mitochondrial GPX4, mitochondrial dysfunction, and enhanced p53 retrograde signaling occurred under Sora treatment. Further, we found that mitochondrial p53 retrograded remarkably into the nucleus and aggravated Sora-induced ferroptosis. The phosphorylation status of GPX4 at the serine 2 site (GPX4Ser2) revealed that mitochondrial p-GPX4Ser2 dephosphorylation was positively associated with ferroptosis, and the mechanism might be related to mitochondrial p53 retrograding into the nucleus. In HCC cells overexpressing PP2A-B55β, it was found that PP2A-B55β directly interacted with mitochondrial GPX4 and promoted Sora-induced ferroptosis in HCC. Further, PP2A-B55β reduced the interaction between mitochondrial GPX4 and p53, leading to mitochondrial p53 retrograding into the nucleus. Moreover, it was confirmed that PP2A-B55β enhanced the ferroptosis-mediated tumor growth inhibition and mitochondrial p53 retrograde signaling in the Sora-treated HCC xenograft tumors. Conclusion: Our data uncovered that the PP2A-B55β/p-GPX4Ser2/p53 axis was a novel regulatory pathway of Sora-induced ferroptosis. Mitochondrial p-GPX4Ser2 dephosphorylation triggered ferroptosis via inducing mitochondrial p53 retrograding into the nucleus, and PP2A-B55β was an upstream signal modulator responsible for mitochondrial p-GPX4Ser2 dephosphorylation. Our findings might serve as a potential theranostic strategy to enhance the efficacy of Sora in HCC treatment through the targeted intervention of p-GPX4 dephosphorylation via PP2A-B55β activation.
    Keywords:  Ferroptosis; Glutathione peroxidase 4; Hepatocellular carcinoma; Protein phosphatase 2A-B55β subunit; Retrograding p53 signal
    DOI:  https://doi.org/10.7150/thno.82132
  10. EMBO J. 2023 Aug 07. e114990
      The building blocks for RNA and DNA are made in the cytosol, meaning mitochondria depend on the import and salvage of ribonucleoside triphosphates (rNTPs) and deoxyribonucleoside triphosphates (dNTPs) for the synthesis of their own genetic material. While extensive research has focused on mitochondrial dNTP homeostasis due to its defects being associated with various mitochondrial DNA (mtDNA) depletion and deletion syndromes, the investigation of mitochondrial rNTP homeostasis has received relatively little attention. In this issue of the EMBO Journal, Grotehans et al provide compelling evidence of a major role for NME6, a mitochondrial nucleoside diphosphate kinase, in the conversion of pyrimidine ribonucleoside diphosphates into the corresponding triphosphates. These data also suggest a significant physiological role for NME6, as its absence results in the depletion of mitochondrial transcripts and destabilization of the electron transport chain (Grotehans et al, 2023).
    DOI:  https://doi.org/10.15252/embj.2023114990
  11. Cell Death Differ. 2023 Aug 11.
      Mitochondria are essential organelles found in eukaryotic cells that play a crucial role in ATP production through oxidative phosphorylation (OXPHOS). Mitochondrial DNA depletion syndrome (MTDPS) is a group of genetic disorders characterized by the reduction of mtDNA copy number, leading to deficiencies in OXPHOS and mitochondrial functions. Mutations in FBXL4, a substrate-binding adaptor of Cullin 1-RING ubiquitin ligase complex (CRL1), are associated with MTDPS, type 13 (MTDPS13). Here, we demonstrate that, FBXL4 directly interacts with the mitophagy cargo receptors BNIP3 and BNIP3L, promoting their degradation through the ubiquitin-proteasome pathway via the assembly of an active CRL1FBXL4 complex. However, MTDPS13-associated FBXL4 mutations impair the assembly of an active CRL1FBXL4 complex. This results in a notable accumulation of BNIP3/3L proteins and robust mitophagy even at basal levels. Excessive mitophagy was observed in Knockin (KI) mice carrying a patient-derived FBXL4 mutation and cortical neurons (CNs)-induced from MTDPS13 patient human induced pluripotent stem cells (hiPSCs). In summary, our findings suggest that abnormal activation of BNIP3/BNIP3L-dependent mitophagy impairs mitochondrial homeostasis and underlies FBXL4-mutated MTDPS13.
    DOI:  https://doi.org/10.1038/s41418-023-01205-1
  12. Nat Metab. 2023 Aug 07.
      Robust and effective T cell immune surveillance and cancer immunotherapy require proper allocation of metabolic resources to sustain energetically costly processes, including growth and cytokine production. Here, we show that asparagine (Asn) restriction on CD8+ T cells exerted opposing effects during activation (early phase) and differentiation (late phase) following T cell activation. Asn restriction suppressed activation and cell cycle entry in the early phase while rapidly engaging the nuclear factor erythroid 2-related factor 2 (NRF2)-dependent stress response, conferring robust proliferation and effector function on CD8+ T cells during differentiation. Mechanistically, NRF2 activation in CD8+ T cells conferred by Asn restriction rewired the metabolic program by reducing the overall glucose and glutamine consumption but increasing intracellular nucleotides to promote proliferation. Accordingly, Asn restriction or NRF2 activation potentiated the T cell-mediated antitumoral response in preclinical animal models, suggesting that Asn restriction is a promising and clinically relevant strategy to enhance cancer immunotherapy. Our study revealed Asn as a critical metabolic node in directing the stress signaling to shape T cell metabolic fitness and effector functions.
    DOI:  https://doi.org/10.1038/s42255-023-00856-1
  13. Eur J Pharm Sci. 2023 Aug 08. pii: S0928-0987(23)00191-4. [Epub ahead of print] 106561
      Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT. These nanoparticles (NPs) showed enhanced drug accumulation in cancer cells through tumor targeting. HCT entered acidic lysosomes through endosomal transport, HA was degraded by hyaluronidase (HAase) in acidic lysosomes, and the positively charged CPT-TPP was exposed and accumulated fully in the mitochondria. Subsequently, CPT-TPP significantly disrupted the mitochondrial structure and damaged mitochondrial function, leading to increased reactive oxygen species (ROS) levels and energy depletion. Finally, HCT enhanced lung cancer cell apoptosis via the activation of caspase-3 and caspase-9. Furthermore, greatly increased tumor growth inhibition was observed in nude mice bearing A549 xenograft tumors after the administration of HCT via tail injection. This study demonstrated that the mitochondria-targeted delivery of CPT may be a promising antitumor therapeutic strategy.
    Keywords:  Apoptosis; Camptothecin; Lung cancer; Mitochondrial Delivery; Triphenylphosphine
    DOI:  https://doi.org/10.1016/j.ejps.2023.106561
  14. Cell Death Dis. 2023 Aug 08. 14(8): 508
      Cervical cancer is one of the leading causes of cancer death in women. Mitochondrial-mediated ferroptosis (MMF) is a recently discovered form of cancer cell death. However, the role and the underlying mechanism of MMF in cervical cancer remain elusive. Here, using an unbiased screening for mitochondrial transmembrane candidates, we identified mitochondrial carrier 1 (MTCH1) as a central mediator of MMF in cervical cancers. MTCH1-deficiency disrupted mitochondrial oxidative phosphorylation while elevated mitochondrial reactive oxygen species (ROS) by decreasing NAD+ levels. This mitochondrial autonomous event initiated a mitochondria-to-nucleus retrograde signaling involving reduced FoxO1 nuclear translocation and subsequently downregulation of the transcription and activity of a key anti-ferroptosis enzyme glutathione peroxidase 4 (GPX4), thereby elevating ROS and ultimately triggering ferroptosis. Strikingly, targeting MTCH1 in combination with Sorafenib effectively and synergistically inhibited the growth of cervical cancer in a nude mouse xenograft model by actively inducing ferroptosis. In conclusion, these findings enriched our understanding of the mechanisms of MMF in which MTCH1 governed ferroptosis though retrograde signaling to FoxO1-GPX4 axis, and provided a potential therapeutic target for treating cervical cancer.
    DOI:  https://doi.org/10.1038/s41419-023-06033-2
  15. Nat Commun. 2023 08 05. 14(1): 4713
      Mitochondrial RNA splicing 2 (Mrs2), a eukaryotic CorA ortholog, enables Mg2+ to permeate the inner mitochondrial membrane and plays an important role in mitochondrial metabolic function. However, the mechanism by which Mrs2 permeates Mg2+ remains unclear. Here, we report four cryo-electron microscopy (cryo-EM) reconstructions of Homo sapiens Mrs2 (hMrs2) under various conditions. All of these hMrs2 structures form symmetrical pentamers with very similar pentamer and protomer conformations. A special structural feature of Cl--bound R-ring, which consists of five Arg332 residues, was found in the hMrs2 structure. Molecular dynamics simulations and mitochondrial Mg2+ uptake assays show that the R-ring may function as a charge repulsion barrier, and Cl- may function as a ferry to jointly gate Mg2+ permeation in hMrs2. In addition, the membrane potential is likely to be the driving force for Mg2+ permeation. Our results provide insights into the channel assembly and Mg2+ permeation of hMrs2.
    DOI:  https://doi.org/10.1038/s41467-023-40516-2
  16. J Transl Med. 2023 08 07. 21(1): 532
      BACKGROUND: Glioblastoma (GBM) is a brain tumor with the highest level of malignancy and the worst prognosis in the central nervous system. Mitochondrial metabolism plays a vital role in the occurrence and development of cancer, which provides critical substances to support tumor anabolism. Mito-LND is a novel small-molecule inhibitor that can selectively inhibit the energy metabolism of tumor cells. However, the therapeutic effect of Mito-LND on GBM remains unclear.METHODS: The present study evaluated the inhibitory effect of Mito-LND on the growth of GBM cells and elucidated its potential mechanism.
    RESULTS: The results showed that Mito-LND could inhibit the survival, proliferation and colony formation of GBM cells. Moreover, Mito-LND induced cell cycle arrest and apoptosis. Mechanistically, Mito-LND inhibited the activity of mitochondrial respiratory chain complex I and reduced mitochondrial membrane potential, thus promoting ROS generation. Importantly, Mito-LND could inhibit the malignant proliferation of GBM by blocking the Raf/MEK/ERK signaling pathway. In vivo experiments showed that Mito-LND inhibited the growth of GBM xenografts in mice and significantly prolonged the survival time of tumor-bearing mice.
    CONCLUSION: Taken together, the current findings support that targeting mitochondrial metabolism may be as a potential and promising strategy for GBM therapy, which will lay the theoretical foundation for further clinical trials on Mito-LND in the future.
    Keywords:  GBM; Mito-LND; Mitochondrial metabolism; Raf/MEK/ERK signaling pathway; Tumor cell proliferation
    DOI:  https://doi.org/10.1186/s12967-023-04332-y
  17. bioRxiv. 2023 Jul 26. pii: 2023.07.24.550301. [Epub ahead of print]
      Pancreatic ductal adenocarcinomas (PDACs) are resistant to systemic treatments including immunotherapy. Over 90% of PDACs have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Previously, we demonstrated that genetic ablation of PI3K isoform, Pik3ca in the KPC ( Kras G12D ; Trp53 R172H ; Pdx1-Cre ) pancreatic cancer cell line induced complete tumor elimination by infiltrating T cells in a mouse model. However, clinical trials using PI3K inhibitors for PDAC patients exhibited limited efficacy due to drug resistance. To identify potential contributors to PI3K inhibitor resistance, we conducted an in vivo genome-wide gene-deletion screen using the Pik3ca -/- KPC (named αKO) cells implanted in the mouse pancreas and discovered propionyl-CoA carboxylase subunit B (PCCB) modulates PIK3CA - mediated immune evasion. Deletion of Pccb gene in αKO cells (named p-αKO) allowed tumor progression causing death of host mice even though p-αKO tumors are infiltrated with T cells. Single-cell RNA sequencing revealed that infiltrating clonally expanded T cells in p-αKO tumors were more exhausted as compared to T cells founds in αKO tumors. Blockade of PD-L1/PD1 interaction reversed T cell exhaustion, slowed tumor growth and improved the survival of mice implanted with p-αKO cells. These results indicate that propionyl-CoA carboxylase activity modulates PIK3CA-regulated immune surveillance of PDAC.
    DOI:  https://doi.org/10.1101/2023.07.24.550301
  18. iScience. 2023 Aug 18. 26(8): 107368
      Although dietary fructose is associated with an elevated risk for pancreatic cancer, the underlying mechanisms remain elusive. Here, we report that ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, is a driver of PDAC development. We demonstrate that fructose triggers KHK and induces fructolytic gene expression in mouse and human PDAC. Genetic inactivation of KhkC enhances the survival of KPC-driven PDAC even in the absence of high fructose diet. Furthermore, it decreases the viability, migratory capability, and growth of KPC cells in a cell autonomous manner. Mechanistically, we demonstrate that genetic ablation of KHKC strongly impairs the activation of KRAS-MAPK pathway and of rpS6, a downstream target of mTORC signaling. Moreover, overexpression of KHKC in KPC cells enhances the downstream KRAS pathway and cell viability. Our data provide new insights into the role of KHK in PDAC progression and imply that inhibiting KHK could have profound implications for pancreatic cancer therapy.
    Keywords:  Biochemistry; Biological sciences; Cancer systems biology; Natural sciences; Systems biology
    DOI:  https://doi.org/10.1016/j.isci.2023.107368
  19. J Physiol. 2023 Aug 09.
      ATP is an important molecule implicated in diverse biochemical processes, including the modulation of ion channel and transporter activity. The voltage-gated proton channel (Hv1) controls proton flow through the transmembrane pathway in response to membrane potential, and various molecules regulate its activity. Although it is believed that ATP is not essential for Hv1 activity, a report has indicated that cytosolic ATP may modulate Hv1. However, the detailed molecular mechanism underlying the effect of ATP on Hv1 is unknown, and whether ATP is involved in the physiological regulation of Hv1 activity remains unclear. Here, we report that cytosolic ATP is required to maintain Hv1 activity. To gain insight into the underlying mechanism, we analysed the effects of ATP on the mouse Hv1 channel (mHv1) using electrophysiological and microscale thermophoresis (MST) methods. Intracellular ATP accelerated the activation kinetics of mHv1, thereby increasing the amplitude of the proton current within the physiological concentration range. The increase in proton current was reproduced with a non-hydrolysable ATP analogue, indicating that ATP directly influences Hv1 activity without an enzymatic reaction. The direct molecular interaction between the purified mHv1 protein and ATP was analysed and demonstrated through MST. In addition, ATP facilitation was observed for the endogenous proton current flowing through Hv1 in the physiological concentration range of ATP. These results suggest that ATP influences Hv1 activity via direct molecular interactions and is required for the physiological function of Hv1. KEY POINTS: We found that ATP is required to maintain the activity of voltage-gated proton channels (Hv1) and investigated the underlying molecular mechanism. Application of intracellular ATP increased the amplitude of the proton current flowing through Hv1, accompanied by an acceleration of activation kinetics. The direct interaction between purified Hv1 protein and ATP was quantitatively analysed using microscale thermophoresis. ATP enhanced endogenous proton currents in breast cancer cell lines. These results suggest that ATP influences Hv1 activity via direct molecular interactions and that its functional characteristics are required for the physiological activity of Hv1.
    Keywords:  ATP; electrophysiology; ion channels; microscale thermophoresis; voltage-gated proton channel
    DOI:  https://doi.org/10.1113/JP284175
  20. Biochem Pharmacol. 2023 Aug 08. pii: S0006-2952(23)00329-5. [Epub ahead of print] 115738
      BH3 mimetics exert anticancer activity by inhibiting anti-apoptotic BCL2 proteins. However, accumulating evidence indicates that the off-target effects of these drugs tightly modulates their anticancer activities. In this study, we investigated whether the BCL2L1 inhibitor A-1331852 induced the death of U937 acute myeloid leukemia (AML) cells through a non-BCL2L1-targeted effect. A-1331852-induced apoptosis in U937 cells was characterized by increased ROS production, downregulation of MCL1, and loss of mitochondrial membrane potential. Ectopic expression of MCL1 alleviated A-1331852-induced mitochondrial depolarization and cytotoxicity in U937 cells. A-1331852-induced ROS production increased p38 MAPK phosphorylation and inhibited MCL1 transcription. Inhibition of p38 MAPK activation restored MCL1 expression in A-1331852-treated cells. A-1331852 triggered p38 MAPK-mediated Cullin 3 downregulation, which in turn increased PP2Acα expression, thereby reducing CREB phosphorylation. A-1331852 reduced the binding of CREB to the MCL1 promoter, leading to the inhibition of CREB-mediated MCL1 transcription. Furthermore, A-1331852 acted synergistically with the BCL2 inhibitor ABT-199 to induce U937 and ABT-199-resistant U937 cell death by inhibiting MCL1 expression. A similar phenomenon caused A-1331852-induced MCL1 downregulation and cytotoxicity in AML HL-60 cells. Collectively, our data suggest that A-1331852 shows an off-target effect of inhibiting MCL1 transcription, ultimately leading to U937 and HL-60 cell death.
    Keywords:  A-1331852; Apoptosis; BH3 mimetic; MCL1; Off-target effect
    DOI:  https://doi.org/10.1016/j.bcp.2023.115738
  21. Cell Death Dis. 2023 08 05. 14(8): 503
      Erythropoietin (EPO) suppresses drug-induced apoptosis in EPO-receptor-positive leukemia cells and allows cells to persist after drug treatment by promoting cellular senescence. Importantly a small proportion of senescent cells can re-enter the cell cycle and resume proliferation after drug treatment, resulting in disease recurrence/persistence. Using a single-cell assay to track individual cells that exit a drug-induced senescence-like state, we show that cells exhibit asynchronous exit from a senescent-like state, and display different rates of proliferation. Escaped cells retain sensitivity to drug treatment, but display inter-clonal variability. We also find heterogeneity in gene expression with some of the escaped clones retaining senescence-associated gene expression. Senescent leukemia cells exhibit changes in gene expression that affect metabolism and senescence-associated secretory phenotype (SASP)-related genes. Herein, we generate a senescence gene signature and show that this signature is a prognostic marker of worse overall survival in AML and multiple other cancers. A portion of senescent leukemia cells depend on lysosome activity; chloroquine, an inhibitor of lysosome activity, promotes senolysis of some senescent leukemia cells. Our study indicates that the serious risks associated with the use of erythropoietin-stimulating agents (ESAs) in anemic cancer patients may be attributed to their ability to promote drug-tolerant cancer cells through the senescence program.
    DOI:  https://doi.org/10.1038/s41419-023-06015-4
  22. EMBO Rep. 2023 Aug 07. e56380
      Oxidative phosphorylation and glycolysis are the dominant ATP-generating pathways in mammalian metabolism. The balance between these two pathways is often shifted to execute cell-specific functions in response to stimuli that promote activation, proliferation, or differentiation. However, measurement of these metabolic switches has remained mostly qualitative, making it difficult to discriminate between healthy, physiological changes in energy transduction or compensatory responses due to metabolic dysfunction. We therefore present a broadly applicable method to calculate ATP production rates from oxidative phosphorylation and glycolysis using Seahorse XF Analyzer data and empirical conversion factors. We quantify the bioenergetic changes observed during macrophage polarization as well as cancer cell adaptation to in vitro culture conditions. Additionally, we detect substantive changes in ATP utilization upon neuronal depolarization and T cell receptor activation that are not evident from steady-state ATP measurements. This method generates a single readout that allows the direct comparison of ATP produced from oxidative phosphorylation and glycolysis in live cells. Additionally, the manuscript provides a framework for tailoring the calculations to specific cell systems or experimental conditions.
    Keywords:  ATP; ECAR; Seahorse XF Analyzer; glycolysis; oxidative phosphorylation
    DOI:  https://doi.org/10.15252/embr.202256380
  23. Sci Transl Med. 2023 08 09. 15(708): eabq1533
      Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.
    DOI:  https://doi.org/10.1126/scitranslmed.abq1533
  24. Cancer Cell Int. 2023 Aug 11. 23(1): 161
      BACKGROUND: Acute myeloid leukaemia (AML) remains difficult to treat despite the development of novel formulations and targeted therapies. Activating mutations in the FLT3 gene are common among patients and make the tumour susceptible to FLT3 inhibitors, but resistance to such inhibitors develops quickly.METHODS: We examined combination therapies aimed at FLT3+-AML, and studied the development of resistance using a newly developed protocol. Combinations of FLT3, CDK4/6 and PI3K inhibitors were tested for synergism.
    RESULTS: We show that AML cells express CDK4 and that the CDK4/6 inhibitors palbociclib and abemaciclib inhibit cellular growth. PI3K inhibitors were also effective in inhibiting the growth of AML cell lines that express FLT3-ITD. Whereas resistance to quizartinib develops quickly, the combinations overcome such resistance.
    CONCLUSIONS: This study suggests that a multi-targeted intervention involving a CDK4/6 inhibitor with a FLT3 inhibitor or a pan-PI3K inhibitor might be a valuable therapeutic strategy for AML to overcome drug resistance. Moreover, many patients cannot tolerate high doses of the drugs that were studied (quizartinib, palbociclib and PI3K inhibitors) for longer periods, and it is therefore of high significance that the drugs act synergistically and lower doses can be used.
    Keywords:  Acute myeloid leukemia; Alpelisib; Combination treatment; Copanlisib; Drug synergism; Duvelisib; FLT3-ITD; Gilteritinib; Idelalisib; Targeted therapy
    DOI:  https://doi.org/10.1186/s12935-023-03000-x