bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023‒07‒16
thirty papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. EMBO J. 2023 Jul 13. e113256
      Replication of the mitochondrial genome and expression of the genes it encodes both depend on a sufficient supply of nucleotides to mitochondria. Accordingly, dysregulated nucleotide metabolism not only destabilises the mitochondrial genome, but also affects its transcription. Here, we report that a mitochondrial nucleoside diphosphate kinase, NME6, supplies mitochondria with pyrimidine ribonucleotides that are necessary for the transcription of mitochondrial genes. Loss of NME6 function leads to the depletion of mitochondrial transcripts, as well as destabilisation of the electron transport chain and impaired oxidative phosphorylation. These deficiencies are rescued by an exogenous supply of pyrimidine ribonucleosides. Moreover, NME6 is required for the maintenance of mitochondrial DNA when the access to cytosolic pyrimidine deoxyribonucleotides is limited. Our results therefore reveal an important role for ribonucleotide salvage in mitochondrial gene expression.
    Keywords:  NME6; mitochondria; mitochondrial DNA; mitochondrial transcription; nucleotide metabolism
    DOI:  https://doi.org/10.15252/embj.2022113256
  2. Haematologica. 2023 Jul 13.
      CD40 signaling upregulates BCL-XL and MCL-1 expression in the chronic lymphocytic leukemia (CLL) lymph node microenvironment (TME), affording resistance to the BCL-2 inhibitor venetoclax (VEN). VEN resistance in the therapeutic setting and after long-term laboratory selection has been linked to metabolic alterations, but the underlying mechanism(s) are unknown. We aimed here to discover how CD40 stimulation as a model for TME-mediated metabolic changes, affects VEN sensitivity/resistance. CD40 stimulation increased oxidative phosphorylation (OXPHOS) and glycolysis, but only OXPHOS inhibition countered VEN resistance. Furthermore, blocking mitochondrial import of pyruvate, glutamine or fatty acids affected CLL metabolism, but did not prevent CD40-mediated VEN resistance. In contrast, inhibition of the electron transport chain (ETC) at complex I, III and V attenuated CLL activation and ATP production, and downregulated MCL-1 and BCL-XL, correlating with reduced CD40 surface expression. Moreover, ETC inhibition equaled mTOR1/2 but not mTOR1 inhibition alone for VEN resistance, and all three pathways were linked to control of general protein translation. In line with this, ETC plus mTOR inhibition synergistically counteracted VEN resistance. These findings link oxidative CLL metabolism to CD40 expression and cellular signaling, and may hold clinical potential.
    DOI:  https://doi.org/10.3324/haematol.2023.282760
  3. BMC Cancer. 2023 Jul 12. 23(1): 650
      BACKGROUND: Recent reports have demonstrated that the entire mitochondrial genome can be secreted in extracellular vesicles (EVs), but the biological attributes of this cell-free mitochondrial DNA (mtDNA) remain insufficiently understood. We used next-generation sequencing to compare plasma EV-derived mtDNA to that of whole blood (WB), peripheral blood mononuclear cells (PBMCs), and formalin-fixed paraffin-embedded (FFPE) tumor tissue from eight rectal cancer patients and WB and fresh-frozen (FF) tumor tissue from eight colon cancer patients.METHODS: Total DNA was isolated before the mtDNA was enriched by PCR with either two primer sets generating two long products or multiple primer sets (for the FFPE tumors), prior to the sequencing. mtDNA diversity was assessed as the total variant number, level of heteroplasmy (mutant mtDNA copies mixed with wild-type copies), variant distribution within the protein-coding genes, and the predicted functional effect of the variants in the different sample types. Differences between groups were compared by paired Student's t-test or ANOVA with Dunnett's multiple comparison tests when comparing matched samples from patients. Mann-Whitney U test was used when comparing differences between the cancer types and patient groups. Pearson correlation analysis was performed.
    RESULTS: In both cancer types, EV mtDNA presented twice as many variants and had significantly more low-level heteroplasmy than WB mtDNA. The EV mtDNA variants were clustered in the coding regions, and the proportion of EV mtDNA variants that were missense mutations (i.e., estimated to moderately affect the mitochondrial protein function) was significantly higher than in WB and tumor tissues. Nonsense mutations (i.e., estimated to highly affect the mitochondrial protein function) were only observed in the tumor tissues and EVs.
    CONCLUSION: Taken together, plasma EV mtDNA in CRC patients exhibits a high degree of diversity.
    TRIAL REGISTRATION: ClinicalTrials.gov: NCT01816607 . Registered 22 March 2013.
    Keywords:  Colorectal cancer; Extracellular vesicles; Next-generation sequencing; mtDNA
    DOI:  https://doi.org/10.1186/s12885-023-11092-x
  4. bioRxiv. 2023 Jun 26. pii: 2023.06.25.546311. [Epub ahead of print]
      Tumor growth and proliferation are regulated by numerous mechanisms. Communication between intracellular organelles has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction) is emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. TMEM16A has recently been shown to drive lysosomal biogenesis, but its impact on mitochondrial function is unclear. Here, we show that (1) patients with high TMEM16A SCCHN display increased mitochondrial content specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) β-catenin/NRF2 signaling is a critical linchpin that drives mitochondrial biogenesis, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that LMI drives tumor proliferation and facilitates a functional interaction between lysosomes and mitochondria. Therefore, inhibition of LMI may serve as a therapeutic strategy for patients with SCCHN.
    DOI:  https://doi.org/10.1101/2023.06.25.546311
  5. Cancer Med. 2023 Jul 13.
      BACKGROUND: Adjuvant chemo- and radiotherapy cause cellular damage to tumorous and healthy dividing cells. Chemotherapy has been shown to cause mitochondrial respiratory dysfunction in non-tumorous tissues, but the effects on human peripheral blood mononuclear cells (PBMCs) remain unknown.AIM: We aimed to investigate mitochondrial respiration of PBMCs before and after adjuvant chemo- and radiotherapy in postmenopausal patients with early breast cancer (EBC) and relate these to metabolic parameters of the patients.
    METHODS: Twenty-three postmenopausal women diagnosed with EBC were examined before and shortly after chemotherapy with (n = 18) or without (n = 5) radiotherapy. Respiration (O2 flux per million PBMCs) was assessed by high-resolution respirometry of intact and permeabilized PBMCs. Clinical metabolic characteristics and mitochondrial DNA (mtDNA) content of PBMCs (mtDN relative to nuclear DNA) were furthermore assessed.
    RESULTS: Respiration of intact and permeabilized PBMCs from EBC patients significantly increased with adjuvant chemo- and radiotherapy (p = 6 × 10-5 and p = 1 × 10-7 , respectively). The oxygen flux attributed to specific mitochondrial complexes and respiratory states increased by 17-43% compared to before therapy initiation. Similarly, PBMC mtDNA content increased by 40% (p = 0.002). Leukocytes (p = 0.0001), hemoglobin (p = 0.0003), and HDL cholesterol (p = 0.003) concentrations decreased whereas triglyceride (p = 0.01) and LDL (p = 0.02) concentrations increased after treatment suggesting a worsened metabolic state. None of the metabolic parameters or the mtDNA content of PBMCs correlated significantly with PBMC respiration.
    CONCLUSION: This study shows that mitochondrial respiration and mtDNA content in circulating PBMCs increase after adjuvant chemo- and radiotherapy in postmenopausal patients with EBC. Besides the increased mtDNA content, a shift in PBMC subpopulation proportions towards cells relying on oxidative phosphorylation, who may be less sensitive to chemotherapy, might influence the increased mitochondrial respiration observed iafter chemotherapy.
    Keywords:  breast cancer; chemotherapy; energy metabolism; high-resolution respirometry; mitochondria; peripheral blood mononuclear cells
    DOI:  https://doi.org/10.1002/cam4.6333
  6. Front Oncol. 2023 ;13 1152553
      Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.
    Keywords:  FAD; NAD(P)H; ROS; fluorescence microscopy; mitochondrial membrane potential; mitochondrial metabolism
    DOI:  https://doi.org/10.3389/fonc.2023.1152553
  7. Front Immunol. 2023 ;14 1207631
      Background: It is well established that inflammation and platelets promote multiple processes of cancer malignancy. Recently, platelets have received attention for their role in carcinogenesis through the production of microvesicles or platelet-derived microparticles (PMPs), which transfer their biological content to cancer cells. We have previously characterized a new subpopulation of these microparticles (termed mito-microparticles), which package functional mitochondria. The potential of mitochondria transfer to cancer cells is particularly impactful as many aspects of mitochondrial biology (i.e., cell growth, apoptosis inhibition, and drug resistance) coincide with cancer hallmarks and disease progression. These metabolic aspects are particularly notable in chronic lymphocytic leukemia (CLL), which is characterized by a relentless accumulation of proliferating, immunologically dysfunctional, mature B-lymphocytes that fail to undergo apoptosis. The present study aimed to investigate the role of PMPs on CLL metabolic plasticity leading to cancer cell phenotypic changes.Methods: CLL cell lines were co-incubated with different concentrations of human PMPs, and their impact on cell proliferation, mitochondrial DNA copy number, OCR level, ATP production, and ROS content was evaluated. Essential genes involved in metabolic-reprogramming were identified using the bioinformatics tools, examined between patients with early and advanced CLL stages, and then validated in PMP-recipient CLLs. Finally, the impact of the induced metabolic reprogramming on CLLs' growth, survival, mobility, and invasiveness was tested against anti-cancer drugs Cytarabine, Venetoclax, and Plumbagin.
    Results: The data demonstrated the potency of PMPs in inducing tumoral growth and invasiveness in CLLs through mitochondrial internalization and OXPHOS stimulation which was in line with metabolic shift reported in CLL patients from early to advanced stages. This metabolic rewiring also improved CLL cells' resistance to Cytarabine, Venetoclax, and Plumbagin chemo drugs.
    Conclusion: Altogether, these findings depict a new platelet-mediated pathway of cancer pathogenesis. We also highlight the impact of PMPs in CLL metabolic reprogramming and disease progression.
    Keywords:  extracellular vesicles; leukemia; microparticles; microvesicles; mitochondria; platelets
    DOI:  https://doi.org/10.3389/fimmu.2023.1207631
  8. Mitochondrion. 2023 Jul 12. pii: S1567-7249(23)00067-3. [Epub ahead of print]
      Mitochondrial functions play a crucial role in determining the metabolic and thermogenic status of brown adipocytes. Increasing evidence reveals that the mitochondrial oxidative phosphorylation (OXPHOS) system plays an important role in brown adipogenesis, but the mechanistic insights are limited. Herein, we explored the potential metabolic mechanisms leading to OXPHOS regulation of brown adipogenesis in pharmacological and genetic models of mitochondrial respiratory complex I deficiency. OXPHOS deficiency inhibits brown adipogenesis through disruption of the brown adipogenic transcription circuit without affecting ATP levels. Neither blockage of calcium signaling nor antioxidant treatment can rescue the suppressed brown adipogenesis. Metabolomics analysis revealed a decrease in levels of tricarboxylic acid cycle intermediates and heme. Heme supplementation specifically enhances respiratory complex I activity without affecting complex II and partially reverses the inhibited brown adipogenesis by OXPHOS deficiency. Moreover, the regulation of brown adipogenesis by the OXPHOS-heme axis may be due to the suppressed histone methylation status by increasing histone demethylation. In summary, our findings identified a heme-sensing retrograde signaling pathway that connects mitochondrial OXPHOS to the regulation of brown adipocyte differentiation and metabolic functions.
    Keywords:  brown adipocytes; differentiation; heme; histone methylation; oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.mito.2023.07.004
  9. Cell Death Dis. 2023 Jul 12. 14(7): 413
      ATPase Inhibitory Factor 1 (IF1) regulates the activity of mitochondrial ATP synthase. The expression of IF1 in differentiated human and mouse cells is highly variable. In intestinal cells, the overexpression of IF1 protects against colon inflammation. Herein, we have developed a conditional IF1-knockout mouse model in intestinal epithelium to investigate the role of IF1 in mitochondrial function and tissue homeostasis. The results show that IF1-ablated mice have increased ATP synthase/hydrolase activities, leading to profound mitochondrial dysfunction and a pro-inflammatory phenotype that impairs the permeability of the intestinal barrier compromising mouse survival upon inflammation. Deletion of IF1 prevents the formation of oligomeric assemblies of ATP synthase and alters cristae structure and the electron transport chain. Moreover, lack of IF1 promotes an intramitochondrial Ca2+ overload in vivo, minimizing the threshold to Ca2+-induced permeability transition (mPT). Removal of IF1 in cell lines also prevents the formation of oligomeric assemblies of ATP synthase, minimizing the threshold to Ca2+-induced mPT. Metabolomic analyses of mice serum and colon tissue highlight that IF1 ablation promotes the activation of de novo purine and salvage pathways. Mechanistically, lack of IF1 in cell lines increases ATP synthase/hydrolase activities and installs futile ATP hydrolysis in mitochondria, resulting in the activation of purine metabolism and in the accumulation of adenosine, both in culture medium and in mice serum. Adenosine, through ADORA2B receptors, promotes an autoimmune phenotype in mice, stressing the role of the IF1/ATP synthase axis in tissue immune responses. Overall, the results highlight that IF1 is required for ATP synthase oligomerization and that it acts as a brake to prevent ATP hydrolysis under in vivo phosphorylating conditions in intestinal cells.
    DOI:  https://doi.org/10.1038/s41419-023-05957-z
  10. Oncogene. 2023 Jul 11.
      Human dedifferentiated liposarcoma (DDLPS) is a rare but lethal cancer with no driver mutations being identified, hampering the development of targeted therapies. We and others recently reported that constitutive activation of Notch signaling through overexpression of the Notch1 intracellular domain (NICDOE) in murine adipocytes leads to tumors resembling human DDLPS. However, the mechanisms underlying the oncogenic functions of Notch activation in DDLPS remains unclear. Here, we show that Notch signaling is activated in a subset of human DDLPS and correlates with poor prognosis and expression of MDM2, a defining marker of DDLPS. Metabolic analyses reveal that murine NICDOE DDLPS cells exhibit markedly reduced mitochondrial respiration and increased glycolysis, mimicking the Warburg effect. This metabolic switch is associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (Ppargc1a, encoding PGC-1α protein), a master regulator of mitochondrial biogenesis. Genetic ablation of the NICDOE cassette rescues the expression of PGC-1α and mitochondrial respiration. Similarly, overexpression of PGC-1α is sufficient to rescue mitochondria biogenesis, inhibit the growth and promote adipogenic differentiation of DDLPS cells. Together, these data demonstrate that Notch activation inhibits PGC-1α to suppress mitochondrial biogenesis and drive a metabolic switch in DDLPS.
    DOI:  https://doi.org/10.1038/s41388-023-02768-6
  11. Int J Mol Sci. 2023 Jun 21. pii: 10420. [Epub ahead of print]24(13):
      Mitochondria play a key role in cancer and their involvement is not limited to the production of ATP only. Mitochondria also produce reactive oxygen species and building blocks to sustain rapid cell proliferation; thus, the deregulation of mitochondrial function is associated with cancer disease development and progression. In cancer cells, a metabolic reprogramming takes place through a different modulation of the mitochondrial metabolic pathways, including oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, glutamine and heme metabolism. Alterations of mitochondrial homeostasis, in particular, of mitochondrial biogenesis, mitophagy, dynamics, redox balance, and protein homeostasis, were also observed in cancer cells. The use of drugs acting on mitochondrial destabilization may represent a promising therapeutic approach in tumors in which mitochondrial respiration is the predominant energy source. In this review, we summarize the main mitochondrial features and metabolic pathways altered in cancer cells, moreover, we present the best known drugs that, by acting on mitochondrial homeostasis and metabolic pathways, may induce mitochondrial alterations and cancer cell death. In addition, new strategies that induce mitochondrial damage, such as photodynamic, photothermal and chemodynamic therapies, and the development of nanoformulations that specifically target drugs in mitochondria are also described. Thus, mitochondria-targeted drugs may open new frontiers to a tailored and personalized cancer therapy.
    Keywords:  ROS; cancer therapy; mitochondrial drug delivery; mitochondrial inhibitors; targeting mitochondria
    DOI:  https://doi.org/10.3390/ijms241310420
  12. Autophagy. 2023 Jul 13. 1-15
      The selective autophagic degradation of mitochondria via mitophagy is essential for preserving mitochondrial homeostasis and, thereby, disease maintenance and progression in acute myeloid leukemia (AML). Mitophagy is orchestrated by a variety of mitophagy receptors whose interplay is not well understood. Here, we established a pairwise multiplexed CRISPR screen targeting mitophagy receptors to elucidate redundancies and gain a deeper understanding of the functional interactome governing mitophagy in AML. We identified OPTN (optineurin) as sole non-redundant mitophagy receptor and characterized its unique role in AML. Knockdown and overexpression experiments demonstrated that OPTN expression is rate-limiting for AML cell proliferation. In a MN1-driven murine transplantation model, loss of OPTN prolonged overall median survival by 7 days (+21%). Mechanistically, we found broadly impaired mitochondrial respiration and function with increased mitochondrial ROS, that most likely caused the proliferation defect. Our results decipher the intertwined network of mitophagy receptors in AML for both ubiquitin-dependent and receptor-mediated mitophagy, identify OPTN as a non-redundant tool to study mitophagy in the context of leukemia and suggest OPTN inhibition as an attractive therapeutic strategy.Abbreviations: AML: acute myeloid leukemia; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; CTRL: control; DFP: deferiprone; GI: genetic interaction; KD: knockdown; KO: knockout; ldMBM, lineage-depleted murine bone marrow; LFC: log2 fold change; LIR: LC3-interacting region; LSC: leukemic stem cell; MAGeCK: Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout; MDIVI-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MOM: mitochondrial outer membrane; NAC: N-acetyl-L-cysteine; OA: oligomycin-antimycin A; OCR: oxygen consumption rate; OE: overexpression; OPTN: optineurin; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SEM: standard error of the mean; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; UBD: ubiquitin-binding domain; WT: wild type.
    Keywords:  AML; MN1-driven mouse model; Mitochondrial ROS; Multiplex CRISPR screen; genetic interactions; leukemia
    DOI:  https://doi.org/10.1080/15548627.2023.2230839
  13. Cancer Lett. 2023 Jul 06. pii: S0304-3835(23)00255-0. [Epub ahead of print]568 216304
      Anaplastic thyroid cancer (ATC) is one of the most aggressive and lethal tumor types, characterized by loss of differentiation, epithelial-to-mesenchymal transition, extremely high proliferation rate, and generalized resistance to therapy. To identify novel relevant, targetable molecular alterations, we analyzed gene expression profiles from a genetically engineered ATC mouse model and from human patient datasets, and found consistent upregulation of genes encoding enzymes involved in the one-carbon metabolic pathway, which uses serine and folates to generate both nucleotides and glycine. Genetic and pharmacological inhibition of SHMT2, a key enzyme of the mitochondrial arm of the one-carbon pathway, rendered ATC cells glycine auxotroph and led to significant inhibition of cell proliferation and colony forming ability, which was primarily caused by depletion of the purine pool. Notably, these growth-suppressive effects were significantly amplified when cells were grown in the presence of physiological types and levels of folates. Genetic depletion of SHMT2 dramatically impaired tumor growth in vivo, both in xenograft models and in an immunocompetent allograft model of ATC. Together, these data establish the upregulation of the one-carbon metabolic pathway as a novel and targetable vulnerability of ATC cells, which can be exploited for therapeutic purposes.
    Keywords:  Folate metabolism; Glycine; Thyroid cancer; Xenograft
    DOI:  https://doi.org/10.1016/j.canlet.2023.216304
  14. Nucleic Acids Res. 2023 Jul 13. pii: gkad591. [Epub ahead of print]
      The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.
    DOI:  https://doi.org/10.1093/nar/gkad591
  15. Nat Commun. 2023 07 11. 14(1): 4105
      Mitochondria are the key organelles for sensing oxygen, which is consumed by oxidative phosphorylation to generate ATP. Lysosomes contain hydrolytic enzymes that degrade misfolded proteins and damaged organelles to maintain cellular homeostasis. Mitochondria physically and functionally interact with lysosomes to regulate cellular metabolism. However, the mode and biological functions of mitochondria-lysosome communication remain largely unknown. Here, we show that hypoxia remodels normal tubular mitochondria into megamitochondria by inducing broad inter-mitochondria contacts and subsequent fusion. Importantly, under hypoxia, mitochondria-lysosome contacts are promoted, and certain lysosomes are engulfed by megamitochondria, in a process we term megamitochondria engulfing lysosome (MMEL). Both megamitochondria and mature lysosomes are required for MMEL. Moreover, the STX17-SNAP29-VAMP7 complex contributes to mitochondria-lysosome contacts and MMEL under hypoxia. Intriguingly, MMEL mediates a mode of mitochondrial degradation, which we termed mitochondrial self-digestion (MSD). Moreover, MSD increases mitochondrial ROS production. Our results reveal a mode of crosstalk between mitochondria and lysosomes and uncover an additional pathway for mitochondrial degradation.
    DOI:  https://doi.org/10.1038/s41467-023-39811-9
  16. Cell Signal. 2023 Jul 06. pii: S0898-6568(23)00208-5. [Epub ahead of print]109 110794
      Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
    Keywords:  Mitochondriopathies; Mitophagy; Oxidative stress; Signal transduction; mtDNA
    DOI:  https://doi.org/10.1016/j.cellsig.2023.110794
  17. Adv Sci (Weinh). 2023 Jul 13. e2300756
      Liver metastasis is the most fatal event of colon cancer patients. Warburg effect has been long challenged by the fact of upregulated oxidative phosphorylation (OXPHOS), while its mechanism remains unclear. Here, metastasis-associated antigen 1 (MTA1) is identified as a newly identified adenosine triphosphate (ATP) synthase modulator by interacting with ATP synthase F1 subunit alpha (ATP5A), facilitates colon cancer liver metastasis by driving mitochondrial bioenergetic metabolism reprogramming, enhancing OXPHOS; therefore, modulating ATP synthase activity and downstream mTOR pathways. High-throughput screening of an anticancer drug shows MTA1 knockout increases the sensitivity of colon cancer to mitochondrial bioenergetic metabolism-targeted drugs and mTOR inhibitors. Inhibiting ATP5A enhances the sensitivity of liver-metastasized colon cancer to sirolimus in an MTA1-dependent manner. The therapeutic effects are verified in xenograft models and clinical cases. This research identifies a new modulator of mitochondrial bioenergetic reprogramming in cancer metastasis and reveals a new mechanism on upregulating mitochondrial OXPHOS as the reversal of Warburg effect in cancer metastasis is orchestrated.
    Keywords:  adenosine triphosphate (ATP); colorectal cancer; mTOR inhibitors; metastasis-associated antigen 1 (MTA1); mitochondrial glucose metabolism
    DOI:  https://doi.org/10.1002/advs.202300756
  18. Adv Protein Chem Struct Biol. 2023 ;pii: S1876-1623(23)00040-8. [Epub ahead of print]136 35-91
      Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
    Keywords:  Bcl2 family protein inhibitors; Caloric restriction; Cell senescence; Metabolic reprograming; Metformin; Mitochondria-targeted antioxidants; Mitochondrial damage-associated molecular patterns; Mitochondrial unfolded protein responses; NAD(+); Reactive oxygen species
    DOI:  https://doi.org/10.1016/bs.apcsb.2023.02.019
  19. Psychoneuroendocrinology. 2023 Jun 14. pii: S0306-4530(23)00300-1. [Epub ahead of print]155 106322
      Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.
    Keywords:  Aging; Allostatic load; Chronic stress; Epigenetic aging; Glucocorticoid; Hypermetabolism; Mitochondria; Telomere
    DOI:  https://doi.org/10.1016/j.psyneuen.2023.106322
  20. Acta Pharm Sin B. 2023 Jun;13(6): 2680-2700
      Since the utilization of anthracyclines in cancer therapy, severe cardiotoxicity has become a major obstacle. The major challenge in treating cancer patients with anthracyclines is minimizing cardiotoxicity without compromising antitumor efficacy. Herein, histone deacetylase SIRT6 expression was reduced in plasma of patients treated with anthracyclines-based chemotherapy regimens. Furthermore, overexpression of SIRT6 alleviated doxorubicin-induced cytotoxicity in cardiomyocytes, and potentiated cytotoxicity of doxorubicin in multiple cancer cell lines. Moreover, SIRT6 overexpression ameliorated doxorubicin-induced cardiotoxicity and potentiated antitumor efficacy of doxorubicin in mice, suggesting that SIRT6 overexpression could be an adjunctive therapeutic strategy during doxorubicin treatment. Mechanistically, doxorubicin-impaired mitochondria led to decreased mitochondrial respiration and ATP production. And SIRT6 enhanced mitochondrial biogenesis and mitophagy by deacetylating and inhibiting Sgk1. Thus, SIRT6 overexpression coordinated metabolic remodeling from glycolysis to mitochondrial respiration during doxorubicin treatment, which was more conducive to cardiomyocyte metabolism, thus protecting cardiomyocytes but not cancer cells against doxorubicin-induced energy deficiency. In addition, ellagic acid, a natural compound that activates SIRT6, alleviated doxorubicin-induced cardiotoxicity and enhanced doxorubicin-mediated tumor regression in tumor-bearing mice. These findings provide a preclinical rationale for preventing cardiotoxicity by activating SIRT6 in cancer patients undergoing chemotherapy, but also advancing the understanding of the crucial role of SIRT6 in mitochondrial homeostasis.
    Keywords:  Antitumor efficacy; Cardiotoxicity; Doxorubicin; Ellagic acid; Glycolysis; Mitochondrial homeostasis; SGK1; SIRT6
    DOI:  https://doi.org/10.1016/j.apsb.2023.03.019
  21. Free Radic Biol Med. 2023 Jul 07. pii: S0891-5849(23)00526-9. [Epub ahead of print]
      Cancer stem cell (CSC) populations are regulated by autophagy, which in turn modulates tumorigenicity and malignancy. In this study, we demonstrate that cisplatin treatment enriches the CSCs population by increasing autophagosome formation and speeding up autophagosome-lysosome fusion by recruiting RAB7 to autolysosomes. Further, cisplatin treatment stimulates lysosomal activity and increases autophagic flux in oral CD44+ cells. Interestingly, both ATG5-and BECN1-dependent autophagy are essential for maintaining cancer stemness, self-renewal, and resistance to cisplatin-induced cytotoxicity in oral CD44+ cells. Moreover, we discovered that autophagy-deficient (shATG5 and/or shBECN1) CD44+ cells benefited from cisplatin treatment because it activated NRF2 (nuclear factor, erythroid 2 like 2) signaling, which in turn reduces the elevated ROS level enhancing cancer stemness. Genetic inhibition of NRF2 (siNRF2) in autophagy-deficient CD44+ cells increases mtROS level, reducing cisplatin-resistance CSCs, and pre-treatment with mitoTEMPO [a mitochondria-targeted SOD (superoxide dismutase) mimetic] lessened the cytotoxic effect enhancing cancer stemness. We also found that inhibiting autophagy (with CQ) and NRF2 signaling (with ML-385) combinedly increased cisplatin cytotoxicity, thereby suppressing the expansion of oral CD44+ cells; this finding has the potential to be clinically applicable in resolving CSC-associated chemoresistance and tumor relapse in oral cancer.
    Keywords:  Apoptosis; Autophagy; Cancer stem cell; NRF2; Oral cancer; mtROS
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.07.008
  22. Arch Biochem Biophys. 2023 Jul 08. pii: S0003-9861(23)00189-3. [Epub ahead of print]744 109690
      Mitochondria are major sources of reactive oxygen species (ROS), which play important roles in both physiological and pathological processes. However, the specific contributions of different ROS production and scavenging components in the mitochondria of metabolically active tissues such as heart and kidney cortex and outer medulla (OM) are not well understood. Therefore, the goal of this study was to determine contributions of different ROS production and scavenging components and provide detailed comparisons of mitochondrial respiration, bioenergetics, ROS emission between the heart and kidney cortex and OM using tissues obtained from the same Sprague-Dawley rat under identical conditions and perturbations. Specifically, data were obtained using both NADH-linked substrate pyruvate + malate and FADH2-linked substrate succinate followed by additions of inhibitors of different components of the electron transport chain (ETC) and oxidative phosphorylation (OxPhos) and other ROS production and scavenging systems. Currently, there is limited data available for the mitochondria of kidney cortex and OM, the two major energy-consuming tissues in the body only next to the heart, and scarce quantitative information on the interplay between mitochondrial ROS production and scavenging systems in the three tissues. The findings from this study demonstrate significant differences in mitochondrial respiratory and bioenergetic functions and ROS emission among the three tissues. The results quantify the rates of ROS production from different complexes of the ETC, identify the complexes responsible for variations in mitochondrial membrane depolarization and regulations of ROS production, and quantify the contributions of ROS scavenging enzymes towards overall mitochondrial ROS emission. These findings advance our fundamental knowledge of tissue-specific and substrate-dependent mitochondrial respiratory and bioenergetic functions and ROS emission. This is important given the critical role that excess ROS production, oxidative stress, and mitochondrial dysfunction in the heart and kidney cortex and OM play in the pathogenesis of cardiovascular and renal diseases, including salt-sensitive hypertension.
    Keywords:  Forward and reverse electron transfer; Mitochondrial metabolism; NADPH oxidase; Oxidative stress; ROS emission; ROS production and scavenging; Respiration and bioenergetics
    DOI:  https://doi.org/10.1016/j.abb.2023.109690
  23. Cell Rep Med. 2023 Jul 04. pii: S2666-3791(23)00236-7. [Epub ahead of print] 101108
      We systematically investigate functional and molecular measures of stemness in patients with acute myeloid leukemia (AML) using a cohort of 121 individuals. We confirm that the presence of leukemic stem cells (LSCs) detected through in vivo xenograft transplantation is associated with poor survival. However, the measurement of leukemic progenitor cells (LPCs) through in vitro colony-forming assays provides an even stronger predictor of overall and event-free survival. LPCs not only capture patient-specific mutations but also retain serial re-plating ability, demonstrating their biological relevance. Notably, LPC content represents an independent prognostic factor in multivariate analyses including clinical guidelines of risk stratification. Our findings suggest that LPCs provide a robust functional measure of AML, enabling quantitative and rapid assessment of a wide range of patients. This highlights the potential of LPCs as a valuable prognostic factor in AML management.
    Keywords:  acute myeloid leukemia; cancer stem cell; colony forming unit; leukemic progenitor cell; leukemic stem cell; prognostic; survival; xenotransplantation
    DOI:  https://doi.org/10.1016/j.xcrm.2023.101108
  24. bioRxiv. 2023 Jun 29. pii: 2023.06.29.547095. [Epub ahead of print]
      Dynamin-related protein 1 (Drp1) is typically known for its role in mitochondrial fission. A partial inhibition of this protein has been reported to be protective in experimental models of neurodegenerative diseases. The protective mechanism has been attributed primarily to improved mitochondrial function. Herein, we provide evidence showing that a partial Drp1-knockout improves autophagy flux independent of mitochondria. First, we characterized in cell and animal models that at low non-toxic concentrations, manganese (Mn), which causes parkinsonian-like symptoms in humans, impaired autophagy flux but not mitochondrial function and morphology. Furthermore, nigral dopaminergic neurons were more sensitive than their neighbouring GABAergic counterparts. Second, in cells with a partial Drp1-knockdown and Drp1 +/- mice, autophagy impairment induced by Mn was significantly attenuated. This study demonstrates that autophagy is a more vulnerable target than mitochondria to Mn toxicity. Furthermore, improving autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of mitochondrial fission.
    DOI:  https://doi.org/10.1101/2023.06.29.547095
  25. Semin Cell Dev Biol. 2023 Jul 10. pii: S1084-9521(23)00141-6. [Epub ahead of print]
      Membrane structural integrity is essential for optimal mitochondrial function. These organelles produce the energy needed for all vital processes, provided their outer and inner membranes are intact. This prevents the release of mitochondrial apoptogenic factors into the cytosol and ensures intact mitochondrial membrane potential (ΔΨm) to sustain ATP production. Cell death by apoptosis is generally triggered by outer mitochondrial membrane permeabilization (MOMP), tightly coupled with loss of ΔΨ m. As these two processes are essential for both mitochondrial function and cell death, researchers have devised various techniques to assess them. Here, we discuss current methods and biosensors available for detecting MOMP and measuring ΔΨ m, focusing on their advantages and limitations and discuss what new imaging tools are needed to improve our knowledge of mitochondrial function.
    Keywords:  Biosensor; MOMP; Microscopy; Mitochondrial membrane potential
    DOI:  https://doi.org/10.1016/j.semcdb.2023.07.003
  26. Nutrients. 2023 Jun 25. pii: 2879. [Epub ahead of print]15(13):
      Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
    Keywords:  anticancer activity; arginine; artificial diets; asparagine; cancer metabolism; cysteine; essential amino acids; glutamine; in vivo; leucine; methionine; mice; non-essential amino acids; restriction; serine
    DOI:  https://doi.org/10.3390/nu15132879
  27. Med Sci Sports Exerc. 2023 Jul 05.
      PURPOSE: Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic malignancy with high recurrence rates. Hypoxia is a hallmark of the TNBC tumor micro-environment, which promotes tumor growth while impairing NK cell cytotoxic functions. Although acute exercise improves NK cell function under normoxic conditions, the impact of exercise on NK cell cytotoxic functions under hypoxic conditions mimicking O2 tensions observed in solid tumors is unknown.METHODS: The cytotoxic functions of resting and post-exercise NK cells isolated from thirteen young inactive healthy women were assessed against breast cancer cells expressing different levels of hormone receptors (MCF-7 and MDA-MB-231) under normoxic and hypoxic conditions. Mitochondrial respiration and H2O2 production rates of the TNBC-activated NK cells were assessed via high-resolution respirometry.
    RESULTS: Under hypoxia, post-exercise NK cells exhibited greater killing of TNBC than resting NK cells. Further, post-exercise NK cells were more likely to kill TNBC under hypoxia than normoxic conditions. In addition, mitochondrial respiration associated with oxidative (OXPHOS) capacity of TNBC-activated NK cells was greater in post-exercise cells than resting cells under normoxia, but not under hypoxia. Finally, acute exercise was associated with reduced mitochondrial H2O2 production by NK cells in both conditions.
    CONCLUSIONS: Together, we present crucial interrelationships between hypoxia and exercise-induced changes in NK cell functions against TNBC cells. By modulating their mitochondrial bioenergetic functions, we postulate that acute exercise improves NK cell function under hypoxic conditions. Specifically, NK cell O2 and H2O2 flow (pmols·s-1·million NK cells-1) changes in response to 30 min cycling suggest that exercise primes NK cell tumor killing by reducing mitochondrial oxidative stress, and thus rescuing their function when exposed to harsh hypoxic environments as observed in the microenvironment of breast solid tumors.
    DOI:  https://doi.org/10.1249/MSS.0000000000003250
  28. Nat Commun. 2023 Jul 14. 14(1): 4207
      While photosynthesis transforms sunlight energy into sugar, aerobic and anaerobic respiration (fermentation) catabolizes sugars to fuel cellular activities. These processes take place within one cell across several compartments, however it remains largely unexplored how they interact with one another. Here we report that the weak acids produced during fermentation down-regulate both photosynthesis and aerobic respiration. This effect is mechanistically explained with an "ion trapping" model, in which the lipid bilayer selectively traps protons that effectively acidify subcellular compartments with smaller buffer capacities - such as the thylakoid lumen. Physiologically, we propose that under certain conditions, e.g., dim light at dawn, tuning down the photosynthetic light reaction could mitigate the pressure on its electron transport chains, while suppression of respiration could accelerate the net oxygen evolution, thus speeding up the recovery from hypoxia. Since we show that this effect is conserved across photosynthetic phyla, these results indicate that fermentation metabolites exert widespread feedback control over photosynthesis and aerobic respiration. This likely allows algae to better cope with changing environmental conditions.
    DOI:  https://doi.org/10.1038/s41467-023-39898-0
  29. Life Sci Alliance. 2023 Sep;pii: e202302149. [Epub ahead of print]6(9):
      The mitophagic degradation of mitochondrial matrix proteins in Saccharomyces cerevisiae was previously shown to be selective, reflecting a pre-engulfment sorting step within the mitochondrial network. This selectivity is regulated through phosphorylation of mitochondrial matrix proteins by the matrix kinases Pkp1 and Pkp2, which in turn appear to be regulated by the phosphatase Aup1/Ptc6. However, these same proteins also regulate the phosphorylation status and catalytic activity of the yeast pyruvate dehydrogenase complex, which is critical for mitochondrial metabolism. To understand the relationship between these two functions, we evaluated the role of the pyruvate dehydrogenase complex in mitophagic selectivity. Surprisingly, we identified a novel function of the complex in regulating mitophagic selectivity, which is independent of its enzymatic activity. Our data support a model in which the pyruvate dehydrogenase complex directly regulates the activity of its associated kinases and phosphatases. This regulatory interaction then determines the phosphorylation state of mitochondrial matrix proteins and their mitophagic fates.
    DOI:  https://doi.org/10.26508/lsa.202302149
  30. Nat Commun. 2023 Jul 14. 14(1): 4221
      Resistance to endocrine treatments and CDK4/6 inhibitors is considered a near-inevitability in most patients with estrogen receptor positive breast cancers (ER + BC). By genomic and metabolomics analyses of patients' tumours, metastasis-derived patient-derived xenografts (PDX) and isogenic cell lines we demonstrate that a fraction of metastatic ER + BC is highly reliant on oxidative phosphorylation (OXPHOS). Treatment by the OXPHOS inhibitor IACS-010759 strongly inhibits tumour growth in multiple endocrine and palbociclib resistant PDX. Mutations in the PIK3CA/AKT1 genes are significantly associated with response to IACS-010759. At the metabolic level, in vivo response to IACS-010759 is associated with decreased levels of metabolites of the glutathione, glycogen and pentose phosphate pathways in treated tumours. In vitro, endocrine and palbociclib resistant cells show increased OXPHOS dependency and increased ROS levels upon IACS-010759 treatment. Finally, in ER + BC patients, high expression of OXPHOS associated genes predict poor prognosis. In conclusion, these results identify OXPHOS as a promising target for treatment resistant ER + BC patients.
    DOI:  https://doi.org/10.1038/s41467-023-40022-5