bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023–06–25
29 papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Biochimie. 2023 Jun 17. pii: S0300-9084(23)00146-3. [Epub ahead of print]214(Pt B): 77-85
      Mitochondria produce heat as a result of an ineffective H+ cycling of mitochondria respiration across the inner mitochondrial membrane (IMM). This event present in all mitochondria, known as proton leak, can decrease protonmotive force (Δp) and restore mitochondrial respiration by partially uncoupling the substrate oxidation from the ADP phosphorylation. During impaired conditions of ATP generation with F1FO-ATPase, the Δp increases and IMM is hyperpolarized. In this bioenergetic state, the respiratory complexes support H+ transport until the membrane potential stops the H+ pump activity. Consequently, the electron transfer is stalled and the reduced form of electron carriers of the respiratory chain can generate O2∙¯ triggering the cascade of ROS formation and oxidative stress. The physiological function to attenuate the production of O2∙¯ by Δp dissipation can be attributed to the proton leak supported by the translocases of IMM.
    Keywords:  Electron transport chain; Mitochondria; Proton conductance; Proton leak; Proton-motive force; Reactive oxygen species
    DOI:  https://doi.org/10.1016/j.biochi.2023.06.008
  2. Nat Commun. 2023 Jun 22. 14(1): 3716
      Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.
    DOI:  https://doi.org/10.1038/s41467-023-39393-6
  3. J Vis Exp. 2023 Jun 02.
      Most physiological and disease processes, from central metabolism to immune response to neurodegeneration, involve mitochondria. The mitochondrial proteome is composed of more than 1,000 proteins, and the abundance of each can vary dynamically in response to external stimuli or during disease progression. Here, we describe a protocol for isolating high-quality mitochondria from primary cells and tissues. The two-step procedure comprises (1) mechanical homogenization and differential centrifugation to isolate crude mitochondria, and (2) tag-free immune capture of mitochondria to isolate pure organelles and eliminate contaminants. Mitochondrial proteins from each purification stage are analyzed by quantitative mass spectrometry, and enrichment yields are calculated, allowing the discovery of novel mitochondrial proteins by subtractive proteomics. Our protocol provides a sensitive and comprehensive approach to studying mitochondrial content in cell lines, primary cells, and tissues.
    DOI:  https://doi.org/10.3791/65252
  4. J Gen Physiol. 2023 Aug 07. pii: e202313347. [Epub ahead of print]155(8):
      Mitochondria are double-membrane organelles crucial for oxidative phosphorylation, enabling efficient ATP synthesis by eukaryotic cells. Both of the membranes, the highly selective inner mitochondrial membrane (IMM) and a relatively porous outer membrane (OMM), harbor a number of integral membrane proteins that help in the transport of biological molecules. These transporters are especially enriched in the IMM, where they help maintain transmembrane gradients for H+, K+, Ca2+, PO43-, and metabolites like ADP/ATP, citrate, etc. Impaired activity of these transporters can affect the efficiency of energy-transducing processes and can alter cellular redox state, leading to activation of cell-death pathways or metabolic syndromes in vivo. Although several methodologies are available to study ion flux through membrane proteins, the patch-clamp technique remains the gold standard for quantitatively analyzing electrogenic ion exchange across membranes. Direct patch-clamp recordings of mitoplasts (mitochondria devoid of outer membrane) in different modes, such as whole-mitoplast or excised-patch mode, allow researchers the opportunity to study the biophysics of mitochondrial transporters in the native membrane, in real time, in isolation from other fluxes or confounding factors due to changes in ion gradients, pH, or mitochondrial potential (ΔΨ). Here, we summarize the use of patch clamp to investigate several membrane proteins of mitochondria. We demonstrate how this technique can be reliably applied to record whole-mitoplast Ca2+ currents mediated via mitochondrial calcium uniporter or H+ currents mediated by uncoupling protein 1 and discuss critical considerations while recording currents from these small vesicles of the IMM (mitoplast diameter = 2-5 µm).
    DOI:  https://doi.org/10.1085/jgp.202313347
  5. Mol Biol Evol. 2023 Jun 20. pii: msad146. [Epub ahead of print]
      The passage of protons across membranes through F1Fo-ATP synthases spins their rotors and drives synthesis of ATP. While the principle of torque generation by proton transfer is known, the mechanisms and routes of proton access and release and their evolution are not fully understood. Here, we show that the entry site and path of protons in the lumenal half-channel of mitochondrial ATP synthases are largely defined by a short N-terminal α-helix of subunit-a. In Trypanosoma brucei and other Euglenozoa, the α-helix is part of another polypeptide chain that is a product of subunit-a gene fragmentation. This α-helix and other elements forming the proton pathway are widely conserved across eukaryotes and in Alphaproteobacteria, the closest extant relatives of mitochondria, but not in other bacteria. The α-helix blocks one of two proton routes found in Escherichia coli, resulting in the single proton entry site in mitochondrial and alphaproteobacterial ATP synthases. Thus, the shape of the access half-channel predates eukaryotes and originated in the lineage from which mitochondria evolved by endosymbiosis.
    DOI:  https://doi.org/10.1093/molbev/msad146
  6. Nature. 2023 Jun 19.
      Uncoupling protein 1 (UCP1) conducts protons through the inner mitochondrial membrane to uncouple mitochondrial respiration from ATP production, thereby converting the electrochemical gradient of protons into heat1,2. The activity of UCP1 is activated by endogenous fatty acids and synthetic small molecules, such as 2,4-dinitrophenol (DNP), and is inhibited by purine nucleotides, such as ATP3-5. However, the mechanism by which UCP1 binds these ligands remains elusive. Here, we present the structures of human UCP1 in the nucleotide-free state, the DNP-bound state, and the ATP-bound state. The structures show that the central cavity of UCP1 is open to the cytosolic side. DNP binds inside the cavity, making contact with TM2 and TM6. ATP also binds inside the same cavity and induces conformational changes in TM2, together with the inward bending of TM1, TM4, TM5, and TM6 of UCP1, resulting in a more compact structure of UCP1. The binding site of ATP overlaps with that of DNP, suggesting that ATP competitively blocks the functional engagement of DNP, resulting in the inhibition of the proton-conducting activity of UCP1.
    DOI:  https://doi.org/10.1038/s41586-023-06332-w
  7. Chemotherapy. 2023 Jun 21.
       BACKGROUND: Preclinical studies have suggested that metformin exerts antitumor effects on various types of cancers. However, the results of human clinical trials have been inconsistent.
    SUMMARY: Metformin is widely considered to be a prime example of a clinically relevant compound that inhibits oxidative phosphorylation (OXPHOS). However, the efficacy of metformin in inhibiting OXPHOS in cancer patients remains uncertain. The available evidence suggests that the plasma concentration of metformin remains within the micromolar range when administered at therapeutic doses. While millimolar concentrations are necessary to inhibit Complex I activity in isolated mitochondria, there is no evidence supporting the idea that metformin accumulates within the mitochondria. Metformin exerts a modest effect on the adenosine diphosphate to adenosine triphosphate ratio, resulting in AMP-activated protein kinase activation, which promotes ATP-generating catabolic pathways and restores cellular energy balance.
    KEY MESSAGES: The value of metformin as an OXPHOS inhibitor for cancer treatment is debatable, and caution should be exercised while using metformin for this purpose.
    DOI:  https://doi.org/10.1159/000531606
  8. Theranostics. 2023 ;13(10): 3165-3187
      Rationale: Mitochondria generate ATP via the oxidative phosphorylation system, which mainly comprises five respiratory complexes found in the inner mitochondrial membrane. A high-order assembly of respiratory complexes is called a supercomplex. COX7A2L is a supercomplex assembly factor that has been well-investigated for studying supercomplex function and assembly. To date, the effects of mitochondrial supercomplexes on cell metabolism have not been elucidated. Methods: We depleted COX7A2L or Cox7a2l in human and mouse cells to generate cell models lacking mitochondrial supercomplexes as well as in DBA/2J mice as animal models. We tested the effect of impaired supercomplex assembly on cell proliferation with different nutrient supply. We profiled the metabolic features in COX7A2L-/- cells and Cox7a2l-/- mice via the combined use of targeted and untargeted metabolic profiling and metabolic flux analysis. We further tested the role of mitochondrial supercomplexes in pancreatic ductal adenocarcinoma (PDAC) through PDAC cell lines and a nude mouse model. Results: Impairing mitochondrial supercomplex assembly by depleting COX7A2L in human cells reprogrammed metabolic pathways toward anabolism and increased glutamine metabolism, cell proliferation and antioxidative defense. Similarly, knockout of Cox7a2l in DBA/2J mice promoted the use of proteins/amino acids as oxidative carbon sources. Mechanistically, impaired supercomplex assembly increased electron flux from CII to CIII/CIV and promoted CII-dependent respiration in COX7A2L-/- cells which further upregulated glutaminolysis and glutamine oxidation to accelerate the reactions of the tricarboxylic acid cycle. Moreover, the proliferation of PDAC cells lacking COX7A2L was inhibited by glutamine deprivation. Conclusion: Our results reveal the regulatory role of mitochondrial supercomplexes in glutaminolysis which may fine-tune the fate of cells with different nutrient availability.
    Keywords:  COX7A2L; PDAC; SCAF1; metabolism; mitochondrial supercomplex
    DOI:  https://doi.org/10.7150/thno.78292
  9. Cell Rep. 2023 Jun 21. pii: S2211-1247(23)00677-0. [Epub ahead of print]42(7): 112666
      Protein lysine crotonylation has been recently identified as a vital posttranslational modification in cellular processes, particularly through the modification of histones. We show that lysine crotonylation is an important modification of the cytoplastic and mitochondria proteins. Enzymes in glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid metabolism, glutamine metabolism, glutathione metabolism, the urea cycle, one-carbon metabolism, and mitochondrial fusion/fission dynamics are found to be extensively crotonylated in pancreatic cancer cells. This modulation is mainly controlled by a pair of crotonylation writers and erasers including CBP/p300, HDAC1, and HDAC3. The dynamic crotonylation of metabolic enzymes is involved in metabolism regulation, which is linked with tumor progression. Interestingly, the activation of MTHFD1 by decrotonylation at Lys354 and Lys553 promotes the development of pancreatic cancer by increasing resistance to ferroptosis. Our study suggests that crotonylation represents a metabolic regulatory mechanism in pancreatic cancer progression.
    Keywords:  CP: Cancer; CP: Molecular biology; MTHFD1; crotonylation; metabolism; pancreatic cancer; tumor progression
    DOI:  https://doi.org/10.1016/j.celrep.2023.112666
  10. Eur J Med Chem. 2023 Jun 17. pii: S0223-5234(23)00543-3. [Epub ahead of print]258 115577
      Human caseinolytic protease P (ClpP) is required for the regulatory hydrolysis of mitochondrial proteins. Allosteric ClpP agonists dysfunctionally activate mitochondrial ClpP in antileukemic therapies. We previously developed ZG111, a potent ClpP agonist derived from ICG-001, inhibits the proliferation of pancreatic ductal adenocarcinoma cell lines in vitro and in vivo by degrading respiratory chain complex proteins. Herein, we studied the structure-activity relationships of ICG-001 analogs as antileukemia agents. Compound ZG36 exhibited improved stabilization effects on the thermal stability of ClpP in acute myeloid leukemia (AML) cell lines compared with the stabilization effects of ZG111, indicating a direct binding between ZG36 and ClpP. Indeed, the resolved ZG36/ClpP structural complex reveals the mode of action of ZG36 during ClpP binding. Compound ZG36 nonselectively degrades respiratory chain complexes and decreases the mitochondrial DNA, eventually leading to the collapse of mitochondrial function and leukemic cell death. Finally, ZG36 treatment inhibited 3-D cell growth in vitro and suppressed the tumorigenesis of AML cells in xenografted mice models. Collectively, we developed a new class of human ClpP agonists that can be used as potential antileukemic therapies.
    Keywords:  Antileukemic therapy; ClpP agonists; Mitochondrial respiratory chain; Structure-activity relationship
    DOI:  https://doi.org/10.1016/j.ejmech.2023.115577
  11. Front Oncol. 2023 ;13 1171887
      In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.
    Keywords:  OXPHOS; Warburg effect; colonic adenoma; colorectal cancer; energy metabolism; metabolic phenotype
    DOI:  https://doi.org/10.3389/fonc.2023.1171887
  12. Nucleic Acids Res. 2023 Jun 23. pii: gkad535. [Epub ahead of print]
      Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.
    DOI:  https://doi.org/10.1093/nar/gkad535
  13. Nat Commun. 2023 Jun 21. 14(1): 3673
      The cystine transporter solute carrier family 7 member 11 (SLC7A11; also called xCT) protects cancer cells from oxidative stress and is overexpressed in many cancers. Here we report a surprising finding that, whereas moderate overexpression of SLC7A11 is beneficial for cancer cells treated with H2O2, a common oxidative stress inducer, its high overexpression dramatically increases H2O2-induced cell death. Mechanistically, high cystine uptake in cancer cells with high overexpression of SLC7A11 in combination with H2O2 treatment results in toxic buildup of intracellular cystine and other disulfide molecules, NADPH depletion, redox system collapse, and rapid cell death (likely disulfidptosis). We further show that high overexpression of SLC7A11 promotes tumor growth but suppresses tumor metastasis, likely because metastasizing cancer cells with high expression of SLC7A11 are particularly susceptible to oxidative stress. Our findings reveal that SLC7A11 expression level dictates cancer cells' sensitivity to oxidative stress and suggests a context-dependent role for SLC7A11 in tumor biology.
    DOI:  https://doi.org/10.1038/s41467-023-39401-9
  14. Leukemia. 2023 Jun 22.
      We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e. day 7, promyelocytes). According with Proton Leak (PL) values, AML blasts can be grouped in two well defined populations. The AML group with blasts presenting high PL or high basal OXPHOS plus high SRC levels had shorter overall survival time and significantly overexpressed myeloid cell leukemia 1 (MCL1) protein. We demonstrate that MCL1 directly binds to Hexokinase 2 (HK2) on the outer mitochondrial membrane (OMM). Overall, these results suggest that high PL and high SRC plus high basal OXPHOS levels at disease onset, arguably with the concourse of MCL1/HK2 action, are significantly linked with shorter overall survival time in AML. Our data describe a new function for MCL1 protein in AMLs' cells: by forming a complex with HK2, MCL1 co-localizes to VDAC on the OMM, thus inducing glycolysis and OXPHOS, ultimately conferring metabolic plasticity and promoting resistance to therapy.
    DOI:  https://doi.org/10.1038/s41375-023-01946-5
  15. J Biol Chem. 2023 Jun 16. pii: S0021-9258(23)01965-8. [Epub ahead of print] 104937
      Mitochondria are essential organelles whose proteome is well-protected by regulated protein degradation and quality control. While the ubiquitin-proteasome system can monitor mitochondrial proteins that reside at the mitochondrial outer membrane or are not successfully imported, resident proteases generally act on proteins within mitochondria. Herein, we assess the degradative pathways for mutant forms of three mitochondrial matrix proteins (mas1-1HA, mas2-11HA, and tim44-8HA) in Saccharomyces cerevisiae. The degradation of these proteins is strongly impaired by loss of either the m-AAA (Afg3p/Yta12p) or Lon (Pim1p) protease. We determine that these mutant proteins are all bona fide Pim1p substrates whose degradation is also blocked in respiratory-deficient "petite" yeast cells, such as in cells lacking m-AAA protease subunits. In contrast, matrix proteins that are substrates of the m-AAA protease are not affected by loss of respiration. The failure to efficiently remove Pim1p substrates in petite cells has no evident relationship to Pim1p maturation, localization, or assembly. However, Pim1p's auto-proteolysis is intact, and its overexpression restores substrate degradation, indicating that Pim1p retains some functionality in petite cells. Interestingly, chemical perturbation of mitochondria with oligomycin similarly prevents degradation of Pim1p substrates. Our results demonstrate that Pim1p activity is highly sensitive to mitochondrial perturbations such as loss of respiration or drug treatment in a manner that we do not observe with other proteases.
    Keywords:  ATP-dependent protease; Saccharomyces cerevisiae; mitochondria; mitochondria-associated degradation (MAD); protein turnover; quality control; respiration
    DOI:  https://doi.org/10.1016/j.jbc.2023.104937
  16. Eur J Haematol. 2023 Jun 21.
       BACKGROUND: Acute T lymphoblastic leukemia (T-ALL) occurs in 25% of adults diagnosed with Acute lymphocytic leukemia (ALL), and drug resistance is still a clinical obstacle. Augmenter of liver regeneration (ALR) is important to ALL drug resistance and is involved in the regulation of mitochondrial function; we speculated that the high expression of ALR in T-ALL promotes drug resistance through the alteration of mitochondrial function and the inhibition of the mitochondrial apoptosis pathway.
    METHOD: We silenced and overexpressed ALR in the T-ALL cell lines that were untreated or treated with dexamethasone (DXM) or methotrexate (MTX). Apoptosis, proliferation, reactive oxygen species and ATP productions, mitochondrial membrane potential, and mitochondrial respiratory chain complex expression in cells were examined. The data were collated to comprehensively evaluate the effects of ALR expression change on mitochondrial function and drug resistance in T-ALL cells.
    RESULTS: ALR knockdown led to the inhibition of proliferation, an increase in apoptosis, and the promotion of the cells' sensitivity to drugs. It also showed mitochondrial dysfunction. ALR knockdown actived the mitochondrial apoptosis pathway. The treatment of ALR knockdown T-ALL cells with MTX or DXM further altered the mitochondrial function of T-ALL cells and actived the mitochondrial apoptosis pathway. Overexpression of ALR promoted cell proliferation and drug resistance, reduced apoptosis, protected mitochondrial function, and inhibited the mitochondrial apoptosis pathway.
    CONCLUSION: T-ALL resistance caused by ALR through the alteration of mitochondrial function is associated with the inhibition of the mitochondrial apoptosis pathway.
    Keywords:  ALR; T-cell acute lymphoblastic leukemia; drug resistance; mitochondria; mitochondrial apoptosis pathway
    DOI:  https://doi.org/10.1111/ejh.14006
  17. bioRxiv. 2023 Jun 11. pii: 2023.06.09.544407. [Epub ahead of print]
      Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo . Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes ( Lm )-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo . Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine-to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo .
    Teaser: Interrogating dynamics of fuel utilization by CD8 + T cells in vivo reveals new metabolic checkpoints for immune function in vivo .
    DOI:  https://doi.org/10.1101/2023.06.09.544407
  18. Nature. 2023 Jun 21.
      Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.
    DOI:  https://doi.org/10.1038/s41586-023-06239-6
  19. Mitochondrion. 2023 Jun 19. pii: S1567-7249(23)00054-5. [Epub ahead of print]
      The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.
    Keywords:  ADP-ribose; FAD; NADH; NUDIX; NUDT6; NUDT9; mitochondria
    DOI:  https://doi.org/10.1016/j.mito.2023.06.003
  20. Nat Metab. 2023 Jun 19.
      Tumour metabolism is controlled by coordinated changes in metabolite abundance and gene expression, but simultaneous quantification of metabolites and transcripts in primary tissue is rare. To overcome this limitation and to study gene-metabolite covariation in cancer, we assemble the Cancer Atlas of Metabolic Profiles of metabolomic and transcriptomic data from 988 tumour and control specimens spanning 11 cancer types in published and newly generated datasets. Meta-analysis of the Cancer Atlas of Metabolic Profiles reveals two classes of gene-metabolite covariation that transcend cancer types. The first corresponds to gene-metabolite pairs engaged in direct enzyme-substrate interactions, identifying putative genes controlling metabolite pool sizes. A second class of gene-metabolite covariation represents a small number of hub metabolites, including quinolinate and nicotinamide adenine dinucleotide, which correlate to many genes specifically expressed in immune cell populations. These results provide evidence that gene-metabolite covariation in cellularly heterogeneous tissue arises, in part, from both mechanistic interactions between genes and metabolites, and from remodelling of the bulk metabolome in specific immune microenvironments.
    DOI:  https://doi.org/10.1038/s42255-023-00817-8
  21. Cell Biol Toxicol. 2023 Jun 23.
      Analysis of the transcriptomic alterations upon chemical challenge, provides in depth mechanistic information on the compound's toxic mode of action, by revealing specific pathway activation and other transcriptional modulations. Mapping changes in cellular behaviour to chemical insult, facilitates the characterisation of chemical hazard. In this study, we assessed the transcriptional landscape of mitochondrial impairment through the inhibition of the electron transport chain (ETC) in a human renal proximal tubular cell line (RPTEC/TERT1). We identified the unfolded protein response pathway (UPR), particularly the PERK/ATF4 branch as a common cellular response across ETC I, II and III inhibitions. This finding and the specific genes elaborated may aid the identification of mitochondrial liabilities of chemicals in both legacy data and prospective transcriptomic studies.
    Keywords:  In vitro; Mitochondria; Renal; Stress pathway; Transcriptomic
    DOI:  https://doi.org/10.1007/s10565-023-09816-7
  22. Blood. 2023 06 20. pii: blood.2022019047. [Epub ahead of print]
      TP53-mutant acute myeloid leukemia (AML) remains the ultimate therapeutic challenge. Epichaperomes, formed in malignant cells, consist of heat shock protein 90 (HSP90) and associated proteins that support the maturation, activity, and stability of oncogenic kinases and transcription factors including mutant p53. High-throughput drug screening identified HSP90 inhibitors as top hits in isogenic TP53-wild type (WT) and -mutant AML cells. We detected epichaperomes in AML cells and stem/progenitor cells with TP53 mutations but not in normal bone marrow (BM) cells. Hence, we investigated the therapeutic potential of specifically targeting epichaperomes with PU-H71 in TP53-mutant AML based on its preferred binding to HSP90 within epichaperomes. PU-H71 effectively suppressed cell intrinsic stress responses and killed AML cells, primarily by inducing apoptosis; targeted TP53-mutant stem/progenitor cells; prolonged survival of TP53 mutant AML xenograft and PDX models but had minimal effects on normal human BM CD34+ cells or on murine hematopoiesis. PU-H71 decreased MCL-1 and multiple signal proteins, increased pro-apoptotic BIM levels, and synergized with BCL-2 inhibitor venetoclax in TP53-mutant AML. Notably, PU-H71 effectively killed TP53-WT and -mutant cells in isogenic TP53-WT/TP53-R248W Molm13 cell mixtures, whereas MDM2 or BCL-2 inhibition only reduced TP53-WT but favored the outgrowth of TP53-mutant cells. Venetoclax enhanced PU-H71's killing of both TP53-WT and -mutant cells in a xenograft model. Our data suggest that epichaperome function is essential for TP53-mutant AML growth and survival and that its inhibition targets mutant AML and stem/progenitor cells, enhances venetoclax activity, and prevents the outgrowth of venetoclax-resistant TP53-mutant AML clones. These concepts warrant clinical evaluation.
    DOI:  https://doi.org/10.1182/blood.2022019047
  23. Nat Metab. 2023 Jun 22.
      Redox metabolites have been observed to fluctuate through the cell cycle in cancer cells, but the functional impacts of such metabolic oscillations remain unknown. Here, we uncover a mitosis-specific nicotinamide adenine dinucleotide phosphate (NADPH) upsurge that is essential for tumour progression. Specifically, NADPH is produced by glucose 6-phosphate dehydrogenase (G6PD) upon mitotic entry, which neutralizes elevated reactive oxygen species (ROS) and prevents ROS-mediated inactivation of mitotic kinases and chromosome missegregation. Mitotic activation of G6PD depends on the phosphorylation of its co-chaperone protein BAG3 at threonine 285, which results in dissociation of inhibitory BAG3. Blocking BAG3T285 phosphorylation induces tumour suppression. A mitotic NADPH upsurge is present in aneuploid cancer cells with high levels of ROS, while nearly unobservable in near-diploid cancer cells. High BAG3T285 phosphorylation is associated with worse prognosis in a cohort of patients with microsatellite-stable colorectal cancer. Our study reveals that aneuploid cancer cells with high levels of ROS depend on a G6PD-mediated NADPH upsurge in mitosis to protect them from ROS-induced chromosome missegregation.
    DOI:  https://doi.org/10.1038/s42255-023-00832-9
  24. Sci Adv. 2023 Jun 23. 9(25): eadg4128
      A potential cause of cancer relapse is pretreatment chemoresistant subpopulations. Identifying targetable features of subpopulations that are poorly primed for therapy-induced cell death may improve cancer therapy. Here, we develop and validate real-time BH3 profiling, a live and functional single-cell measurement of pretreatment apoptotic sensitivity that occurs upstream of apoptotic protease activation. On the same single cells, we perform cyclic immunofluorescence, which enables multiplexed immunofluorescence of more than 30 proteins on the same cell. Using cultured cells and rapid ex vivo cultures of colon cancer patient-derived xenograft (PDX) models, we identify Bak as a univariate correlate of apoptotic priming, find that poorly primed subpopulations can correspond to specific stages of the cell cycle, and, in some PDX models, identify increased expression of Bcl-XL, Mcl-1, or Her2 in subpopulations that are poorly primed for apoptosis. Last, we generate and validate mathematical models of single-cell priming that describe how targetable proteins contribute to apoptotic priming.
    DOI:  https://doi.org/10.1126/sciadv.adg4128
  25. Biol Res. 2023 Jun 22. 56(1): 33
       BACKGROUND: Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As 'mitochondrial gatekeepers', VDACs control organelle and cell metabolism and are involved in many diseases. Despite the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC protein expression has not yet been considered.
    RESULTS: We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases, we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML).
    CONCLUSIONS: Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene in AML, correlated with a downregulation of the parental VDAC1 gene.
    Keywords:  Acute myeloid leukemia (AML); Competing endogenous RNAs (ceRNAs); Disease animal model; Pseudogene; Voltage-dependent anion selective channels (VDACs) gene
    DOI:  https://doi.org/10.1186/s40659-023-00446-1
  26. Nat Metab. 2023 Jun 19.
      Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.
    DOI:  https://doi.org/10.1038/s42255-023-00818-7
  27. Science. 2023 Jun 23. 380(6651): eadh9351
      In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.
    DOI:  https://doi.org/10.1126/science.adh9351
  28. Sci Adv. 2023 Jun 23. 9(25): eadg7038
      Fibrolamellar hepatocellular carcinoma (FLC) is a usually lethal primary liver cancer driven by a somatic dysregulation of protein kinase A. We show that the proteome of FLC tumors is distinct from that of adjacent nontransformed tissue. These changes can account for some of the cell biological and pathological alterations in FLC cells, including their drug sensitivity and glycolysis. Hyperammonemic encephalopathy is a recurrent problem in these patients, and established treatments based on the assumption of liver failure are unsuccessful. We show that many of the enzymes that produce ammonia are increased and those that consume ammonia are decreased. We also demonstrate that the metabolites of these enzymes change as expected. Thus, hyperammonemic encephalopathy in FLC may require alternative therapeutics.
    DOI:  https://doi.org/10.1126/sciadv.adg7038
  29. Discov Oncol. 2023 Jun 23. 14(1): 109
      Nasopharyngeal carcinoma (NPC) is a prevalent cancer in Southern China, North Africa, and Southeast Asia. The translocase of the outer membrane (TOM) 40 is a transporter of mitochondrial proteins, and is involved in ovarian cancer cell growth. However, its role in the progression of NPC is still unclear. We found that TOM40 levels were upregulated in NPC tissues and multiple NPC cell lines. In addition, high TOM40 expression in the tumor tissues was associated with poor overall survival and disease specific survival. TOM40 knockdown in the NPC cell lines inhibited their proliferation in vitro and in vivo. Furthermore, TOM40 silencing also increased intracellular production of reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP). Mechanistically, the anti-tumor effects of TOM40 silencing were dependent on the inhibition of AKT/mTOR signaling and activation of p53 signaling. To summarize, TOM40 mediates NPC progression through ROS-mediated AKT/mTOR and p53 signaling. Our findings highlight the potential of TOM40 as a therapeutic target for NPC.
    Keywords:  AKT; Nasopharyngeal carcinoma; ROS; TOM40; p53
    DOI:  https://doi.org/10.1007/s12672-023-00721-3