bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023‒06‒18
thirty-six papers selected by
Kelsey Fisher-Wellman
East Carolina University

  1. Life Sci Alliance. 2023 Sep;pii: e202302127. [Epub ahead of print]6(9):
      Mitochondrial dysfunction and cellular senescence are hallmarks of aging. However, the relationship between these two phenomena remains incompletely understood. In this study, we investigated the rewiring of mitochondria upon development of the senescent state in human IMR90 fibroblasts. Determining the bioenergetic activities and abundance of mitochondria, we demonstrate that senescent cells accumulate mitochondria with reduced OXPHOS activity, resulting in an overall increase of mitochondrial activities in senescent cells. Time-resolved proteomic analyses revealed extensive reprogramming of the mitochondrial proteome upon senescence development and allowed the identification of metabolic pathways that are rewired with different kinetics upon establishment of the senescent state. Among the early responding pathways, the degradation of branched-chain amino acid was increased, whereas the one carbon folate metabolism was decreased. Late-responding pathways include lipid metabolism and mitochondrial translation. These signatures were confirmed by metabolic flux analyses, highlighting metabolic rewiring as a central feature of mitochondria in cellular senescence. Together, our data provide a comprehensive view on the changes in mitochondrial proteome in senescent cells and reveal how the mitochondrial metabolism is rewired in senescent cells.
  2. J Vis Exp. 2023 May 19.
      The flow of electrons in the mitochondrial electron transport chain (ETC) supports multifaceted biosynthetic, bioenergetic, and signaling functions in mammalian cells. As oxygen (O2) is the most ubiquitous terminal electron acceptor for the mammalian ETC, the O2 consumption rate is frequently used as a proxy for mitochondrial function. However, emerging research demonstrates that this parameter is not always indicative of mitochondrial function, as fumarate can be employed as an alternative electron acceptor to sustain mitochondrial functions in hypoxia. This article compiles a series of protocols that allow researchers to measure mitochondrial function independently of the O2 consumption rate. These assays are particularly useful when studying mitochondrial function in hypoxic environments. Specifically, we describe methods to measure mitochondrial ATP production, de novo pyrimidine biosynthesis, NADH oxidation by complex I, and superoxide production. In combination with classical respirometry experiments, these orthogonal and economical assays will provide researchers with a more comprehensive assessment of mitochondrial function in their system of interest.
  3. Chem Sci. 2023 Jun 14. 14(23): 6309-6318
      Respiratory complex I is a redox-driven proton pump contributing to about 40% of total proton motive force required for mitochondrial ATP generation. Recent high-resolution cryo-EM structural data revealed the positions of several water molecules in the membrane domain of the large enzyme complex. However, it remains unclear how protons flow in the membrane-bound antiporter-like subunits of complex I. Here, we performed multiscale computer simulations on high-resolution structural data to model explicit proton transfer processes in the ND2 subunit of complex I. Our results show protons can travel the entire width of antiporter-like subunits, including at the subunit-subunit interface, parallel to the membrane. We identify a previously unrecognized role of conserved tyrosine residues in catalyzing horizontal proton transfer, and that long-range electrostatic effects assist in reducing energetic barriers of proton transfer dynamics. Results from our simulations warrant a revision in several prevailing proton pumping models of respiratory complex I.
  4. Autophagy. 2023 Jun 13. 1-2
      Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of any cancer in the United States. Our previous work has shown that autophagy can promote PDAC progression. We recently established the importance of autophagy in regulating bioavailable iron to control mitochondrial metabolism in PDAC. We found that inhibition of autophagy in PDAC leads to mitochondrial dysfunction due to abrogation of succinate dehydrogenase complex iron sulfur subunit B (SDHB) expression. Additionally, we observed that cancer-associated fibroblasts (CAFs) can provide iron to autophagy-inhibited PDAC tumor cells, thereby increasing their resistance to autophagy inhibition. To impede such metabolic compensation, we used a low iron diet together with autophagy inhibition and demonstrated a significant improvement of tumor response in syngeneic PDAC models.Abbreviations: PDAC: Pancreatic ductal adenocarcinoma; CAFs: cancer-associated fibroblasts; SDHB: succinate dehydrogenase complex iron sulfur subunit B; ISCA1: iron sulfur cluster assembly protein 1; FPN: ferroportin; LIP: labile iron pool; FAC: ferric ammonium chloride; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation, IL6: interleukin 6; Fe-S: iron sulfur; ATP: adenosine triphosphate.
    Keywords:  Autophagy; cancer associated fibroblasts; iron metabolism; lysosome; mitochondria; pancreatic ductal adenocarcinoma
  5. Redox Biol. 2023 Jun 04. pii: S2213-2317(23)00160-X. [Epub ahead of print]64 102759
      Regulation of mitochondrial redox balance is emerging as a key event for cell signaling in both physiological and pathological conditions. However, the link between the mitochondrial redox state and the modulation of these conditions remains poorly defined. Here, we discovered that activation of the evolutionary conserved mitochondrial calcium uniporter (MCU) modulates mitochondrial redox state. By using mitochondria-targeted redox and calcium sensors and genetic MCU-ablated models, we provide evidence of the causality between MCU activation and net reduction of mitochondrial (but not cytosolic) redox state. Redox modulation of redox-sensitive groups via MCU stimulation is required for maintaining respiratory capacity in primary human myotubes and C. elegans, and boosts mobility in worms. The same benefits are obtained bypassing MCU via direct pharmacological reduction of mitochondrial proteins. Collectively, our results demonstrate that MCU regulates mitochondria redox balance and that this process is required to promote the MCU-dependent effects on mitochondrial respiration and mobility.
    Keywords:  C. elegans; Calcium signaling; MCU; Mitochondria; Redox biology; Skeletal muscle
  6. J Cell Sci. 2023 Jun 14. pii: jcs.259986. [Epub ahead of print]
      MTP18, an inner mitochondrial membrane protein, plays a vital role in maintaining mitochondrial morphology. Furthermore, MTP18 induces mitochondrial fission with subsequent mitophagy, functioning as a mitophagy receptor that targets dysfunctional mitochondria into autophagosomes for elimination. Interestingly, MTP18 interacts with LC3 through its LC3 interacting region (LIR) to induce mitochondrial autophagy. Mutation in the LIR motif (mLIR) inhibits that interaction, thus suppressing mitophagy. Moreover, Parkin/PINK1 deficiency abrogates mitophagy in MTP18-overexpressing FaDu cells. Upon exposure to CCCP, MTP18[mLIR]-FaDu cells show decreased TOM20 expression without affecting COX IV expression. Conversely, loss of Parkin/PINK1 results in inhibition of TOM20 and COX IV degradation in MTP18[mLIR]-FaDu cells exposed to CCCP, establishing Parkin-mediated proteasomal degradation of outer mitochondrial membrane as essential for effective mitophagy. We found that MTP18 provides a survival advantage to oral cancer cells exposed to cellular stress and that inhibition of MTP18-dependent mitophagy induced cell death in oral cancer cells. The findings demonstrate that MTP18 is a novel mitophagy receptor and that MTP18-dependent mitophagy has pathophysiologic implications for oral cancer progression, indicating inhibition of MTP18-mitophagy could thus be a promising cancer therapy strategy.
    Keywords:  Apoptosis; MTP18; Mitochondrial fission; Mitophagy; Parkin
  7. Mol Cell. 2023 Jun 15. pii: S1097-2765(23)00413-6. [Epub ahead of print]83(12): 2059-2076.e6
      The heme-regulated kinase HRI is activated under heme/iron deficient conditions; however, the underlying molecular mechanism is incompletely understood. Here, we show that iron-deficiency-induced HRI activation requires the mitochondrial protein DELE1. Notably, mitochondrial import of DELE1 and its subsequent protein stability are regulated by iron availability. Under steady-state conditions, DELE1 is degraded by the mitochondrial matrix-resident protease LONP1 soon after mitochondrial import. Upon iron chelation, DELE1 import is arrested, thereby stabilizing DELE1 on the mitochondrial surface to activate the HRI-mediated integrated stress response (ISR). Ablation of this DELE1-HRI-ISR pathway in an erythroid cell model enhances cell death under iron-limited conditions, suggesting a cell-protective role for this pathway in iron-demanding cell lineages. Our findings highlight mitochondrial import regulation of DELE1 as the core component of a previously unrecognized mitochondrial iron responsive pathway that elicits stress signaling following perturbation of iron homeostasis.
    Keywords:  DELE1; HRI; LONP1; erythroid cells; integrated stress response; iron; mitochondria; mitochondrial import; mitochondrial proteostasis
  8. iScience. 2023 Jun 16. 26(6): 106899
      Pancreatic ductal adenocarcinoma (PDAC) remains one of the human cancers with the poorest prognosis. Interestingly, we found that mitochondrial respiration in primary human PDAC cells depends mainly on the fatty acid oxidation (FAO) to meet basic energy requirements. Therefore, we treated PDAC cells with perhexiline, a well-recognized FAO inhibitor used in cardiac diseases. Some PDAC cells respond efficiently to perhexiline, which acts synergistically with chemotherapy (gemcitabine) in vitro and in two xenografts in vivo. Importantly, perhexiline in combination with gemcitabine induces complete tumor regression in one PDAC xenograft. Mechanistically, this co-treatment causes energy and oxidative stress promoting apoptosis but does not exert inhibition of FAO. Yet, our molecular analysis indicates that the carnitine palmitoyltransferase 1C (CPT1C) isoform is a key player in the response to perhexiline and that patients with high CPT1C expression have better prognosis. Our study reveals that repurposing perhexiline in combination with chemotherapy is a promising approach to treat PDAC.
    Keywords:  Biological sciences; Cancer; Cancer systems biology
  9. Biochem Biophys Res Commun. 2023 Jun 01. pii: S0006-291X(23)00683-6. [Epub ahead of print]671 46-57
      Targeting oxidative phosphorylation (OXPHOS) has emerged as a strategy for cancer treatment. However, most tumor cells exhibit Warburg effect, they primarily rely on glycolysis to generate ATP, and hence they are resistant to OXPHOS inhibitors. Here, we report that lactic acidosis, a ubiquitous factor in the tumor microenvironment, increases the sensitivity of glycolysis-dependent cancer cells to OXPHOS inhibitors by 2-4 orders of magnitude. Lactic acidosis reduces glycolysis by 79-86% and increases OXPHOS by 177-218%, making the latter the main production pathway of ATP. In conclusion, we revealed that lactic acidosis renders cancer cells with typical Warburg effect phenotype highly sensitive to OXPHOS inhibitors, thereby greatly expanding the anti-cancer spectrum of OXPHOS inhibitors. In addition, as lactic acidosis is a ubiquitous factor of TME, it is a potential indicator to predict the efficacy of OXPHOS inhibitors in cancer treatment.
    Keywords:  Cancer; Lactic acidosis; OXPHOS; OXPHOS inhibitors; Warburg effect
  10. Trends Endocrinol Metab. 2023 Jun 13. pii: S1043-2760(23)00107-8. [Epub ahead of print]
      Given their polyvalent roles, an intrinsic challenge that mitochondria face is the continuous exposure to various stressors including mitochondrial import defects, which leads to their dysfunction. Recent work has unveiled a presequence translocase-associated import motor (PAM) complex-dependent quality control pathway whereby misfolded proteins mitigate mitochondrial protein import and subsequently elicit mitophagy without the loss of mitochondrial membrane potential.
    Keywords:  PINK1; TOM complex; mitochondrial import; mitochondrial quality control; mitophagy; protein quality control
  11. Cell Rep. 2023 Jun 12. pii: S2211-1247(23)00652-6. [Epub ahead of print]42(6): 112641
      Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accumulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacological activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.
    Keywords:  CP: Metabolism; branched-chain amino acids; branched-chain keto acids; gluconeogenesis; mitochondrial pyruvate carrier; pyruvate
  12. Cells. 2023 May 25. pii: 1473. [Epub ahead of print]12(11):
      Mitochondrial dysfunction is observed in various conditions, from metabolic syndromes to mitochondrial diseases. Moreover, mitochondrial DNA (mtDNA) transfer is an emerging mechanism that enables the restoration of mitochondrial function in damaged cells. Hence, developing a technology that facilitates the transfer of mtDNA can be a promising strategy for the treatment of these conditions. Here, we utilized an ex vivo culture of mouse hematopoietic stem cells (HSCs) and succeeded in expanding the HSCs efficiently. Upon transplantation, sufficient donor HSC engraftment was attained in-host. To assess the mitochondrial transfer via donor HSCs, we used mitochondrial-nuclear exchange (MNX) mice with nuclei from C57BL/6J and mitochondria from the C3H/HeN strain. Cells from MNX mice have C57BL/6J immunophenotype and C3H/HeN mtDNA, which is known to confer a higher stress resistance to mitochondria. Ex vivo expanded MNX HSCs were transplanted into irradiated C57BL/6J mice and the analyses were performed at six weeks post transplantation. We observed high engraftment of the donor cells in the bone marrow. We also found that HSCs from the MNX mice could transfer mtDNA to the host cells. This work highlights the utility of ex vivo expanded HSC to achieve the mitochondrial transfer from donor to host in the transplant setting.
    Keywords:  MNX mouse, 5; ex vivo HSC expansion 3; in vivo mitochondrial transfer; mitochondrial DNA 2
  13. Oncol Res. 2021 ;29(3): 201-215
      LncRNAs and metabolism represents two factors involved in cancer initiation and progression. However, the interaction between lncRNAs and metabolism remains to be fully explored. In this study, lncRNA FEZF1-AS1 (FEZF1-AS1) was found upregulated in colon cancer after screening all the lncRNAs of colon cancer tissues deposited in TCGA, the result of which was further confirmed by RNAscope staining on a colon tissue chip. The results obtained using FEZF1-AS1 knockout colon cancer cells (SW480 KO and HCT-116 KO) constructed using CRISPR/Cas9 system confirmed the proliferation, invasion, and migration-promoting function of FEZF1-AS1 in vitro. Mechanistically, FEZF1-AS1 associated with the mitochondrial protein phosphoenolpyruvate carboxykinase (PCK2), which plays an essential role in regulating energy metabolism in the mitochondria. Knockdown of FEZF1-AS1 greatly decreased PCK2 protein levels, broke the homeostasis of energy metabolism in the mitochondria, and inhibited proliferation, invasion, and migration of SW480 and HCT-116 cells. PCK2 overexpression in FEZF1-AS1 knockout cells partially rescued the tumor inhibitory effect on colon cancer cells both in vitro and in vivo. Moreover, PCK2 overexpression specifically rescued the abnormal accumulation of Flavin mononucleotide (FMN) and succinate, both of which play an important role in oxidative phosphorylation (OXPHOS). Overall, these results indicate that FEZF1-AS1 is an oncogene through regulating energy metabolism of the cell. This research reveals a new mechanism for lncRNAs to regulate colon cancer and provides a potential target for colon cancer diagnosis and treatment.
    Keywords:  Colon cancer; Glycolysis; Long non-coding RNA (LncRNA); Oxidative phosphorylation (OXPHOS); Phosphoenolpyruvate carboxykinase2 (PCK2); Tricarboxylic acid cycle (TCA)
  14. J Biol Chem. 2023 Jun 10. pii: S0021-9258(23)01936-1. [Epub ahead of print] 104908
      Whereas it is known that p53 broadly regulates cell metabolism, the specific activities that mediate this regulation remain partially understood. Here, we identified carnitine o-octanoyltransferase (CROT) as a p53 transactivation target that is upregulated by cellular stresses in a p53-dependent manner. CROT is a peroxisomal enzyme catalyzing very long-chain fatty acids (VLCFAs) conversion to medium chain fatty acids (MCFAs) that can be absorbed by mitochondria during β-oxidation. p53 induces CROT transcription through binding to consensus response elements in the 5'-UTR of CROT mRNA. Overexpression of wild type but not enzymatically inactive mutant CROT promotes mitochondrial oxidative respiration, while down-regulation of CROT inhibits mitochondrial oxidative respiration. Nutrient depletion induces p53-dependent CROT expression that facilitates cell growth and survival; in contrast cells deficient in CROT have blunted cell growth and reduced survival during nutrient depletion. Together, these data are consistent with a model where p53-regulated CROT expression allows cells to be more efficiently utilizing stored VLCFAs to survive nutrient depletion stresses.
    Keywords:  CROT; nutrient starvation; oxidative metabolism; p53
  15. Cancers (Basel). 2023 Jun 03. pii: 3044. [Epub ahead of print]15(11):
      Cross-species investigations of cancer invasiveness are a new approach that has already identified new biomarkers which are potentially useful for improving tumor diagnosis and prognosis in clinical medicine and veterinary science. In this study, we combined proteomic analysis of four experimental rat malignant mesothelioma (MM) tumors with analysis of ten patient-derived cell lines to identify common features associated with mitochondrial proteome rewiring. A comparison of significant abundance changes between invasive and non-invasive rat tumors gave a list of 433 proteins, including 26 proteins reported to be exclusively located in mitochondria. Next, we analyzed the differential expression of genes encoding the mitochondrial proteins of interest in five primary epithelioid and five primary sarcomatoid human MM cell lines; the most impressive increase was observed in the expression of the long-chain acyl coenzyme A dehydrogenase (ACADL). To evaluate the role of this enzyme in migration/invasiveness, two epithelioid and two sarcomatoid human MM cell lines derived from patients with the highest and lowest overall survival were studied. Interestingly, sarcomatoid vs. epithelioid cell lines were characterized by higher migration and fatty oxidation rates, in agreement with ACADL findings. These results suggest that evaluating mitochondrial proteins in MM specimens might identify tumors with higher invasiveness.
    Keywords:  biomarker; fatty acid β-oxidation; long-chain specific acyl-CoA dehydrogenase; malignant mesothelioma; metabolism; mitochondria
  16. J Biol Chem. 2023 Jun 09. pii: S0021-9258(23)01934-8. [Epub ahead of print] 104906
      The tumor suppressor Liver Kinase B1 (LKB1) is a multifunctional serine/threonine protein kinase that regulates cell metabolism, polarity and growth and is associated with Peutz-Jeghers Syndrome and cancer predisposition. The LKB1 gene comprises 10 exons and 9 introns. Three spliced LKB1 variants have been documented, and they reside mainly in the cytoplasm, although two possess a nuclear-localization sequence (NLS) and are able to shuttle into the nucleus. Here, we report the identification of a fourth and novel LKB1 isoform that is, interestingly, targeted to the mitochondria. We show that this mitochondria-localized LKB1 (mLKB1) is generated from alternative splicing in the 5' region of the transcript and translated from an alternative initiation codon encoded by a previously unknown exon 1b (131bp) hidden within the long intron 1 of LKB1 gene. We found by replacing the N-terminal NLS of the canonical LKB1 isoform, the N-terminus of the alternatively spliced mLKB1 variant encodes a mitochondrial transit peptide that allows it to localize to the mitochondria. We further demonstrate that mLKB1 colocalizes histologically with mitochondria-resident ATP Synthase and NAD-dependent deacetylase sirtuin-3, mitochondrial (SIRT3) and that its expression is rapidly and transiently upregulated by oxidative stress. We conclude that this novel LKB1 isoform, mLKB1, plays a critical role in regulating mitochondrial metabolic activity and oxidative stress response.
    Keywords:  DNA damage; cellular localization; exon; intron; isoforms; mitochondrial respiration
  17. Nat Chem Biol. 2023 Jun 12.
      O-linked β-N-acetyl glucosamine (O-GlcNAc) is at the crossroads of cellular metabolism, including glucose and glutamine; its dysregulation leads to molecular and pathological alterations that cause diseases. Here we report that O-GlcNAc directly regulates de novo nucleotide synthesis and nicotinamide adenine dinucleotide (NAD) production upon abnormal metabolic states. Phosphoribosyl pyrophosphate synthetase 1 (PRPS1), the key enzyme of the de novo nucleotide synthesis pathway, is O-GlcNAcylated by O-GlcNAc transferase (OGT), which triggers PRPS1 hexamer formation and relieves nucleotide product-mediated feedback inhibition, thereby boosting PRPS1 activity. PRPS1 O-GlcNAcylation blocked AMPK binding and inhibited AMPK-mediated PRPS1 phosphorylation. OGT still regulates PRPS1 activity in AMPK-deficient cells. Elevated PRPS1 O-GlcNAcylation promotes tumorigenesis and confers resistance to chemoradiotherapy in lung cancer. Furthermore, Arts-syndrome-associated PRPS1 R196W mutant exhibits decreased PRPS1 O-GlcNAcylation and activity. Together, our findings establish a direct connection among O-GlcNAc signals, de novo nucleotide synthesis and human diseases, including cancer and Arts syndrome.
  18. Free Radic Biol Med. 2023 Jun 13. pii: S0891-5849(23)00495-1. [Epub ahead of print]
      Mitochondria-targeted coenzyme Q10 (Mito-ubiquinone, Mito-quinone mesylate, or MitoQ) was shown to be an effective antimetastatic drug in patients with triple-negative breast cancer. MitoQ, sold as a nutritional supplement, prevents breast cancer recurrence. It potently inhibited tumor growth and tumor cell proliferation in preclinical xenograft models and in vitro breast cancer cells. The proposed mechanism of action involves the inhibition of reactive oxygen species by MitoQ via a redox-cycling mechanism between the oxidized form, MitoQ, and the fully reduced form, MitoQH2 (also called Mito-ubiquinol). To fully corroborate this antioxidant mechanism, we substituted the hydroquinone group (-OH) with the methoxy group (-OCH3). Unlike MitoQ, the modified form, dimethoxy MitoQ (DM-MitoQ), lacks redox-cycling between the quinone and hydroquinone forms. DM-MitoQ was not converted to MitoQ in MDA-MB-231 cells. We tested the antiproliferative effects of both MitoQ and DM-MitoQ in human breast cancer (MDA-MB-231), brain-homing cancer (MDA-MB-231BR), and glioma (U87MG) cells. Surprisingly, DM-MitoQ was slightly more potent than MitoQ (IC50 = 0.26 μM versus 0.38 μM) at inhibiting proliferation of these cells. Both MitoQ and DM-MitoQ potently inhibited mitochondrial complex I-dependent oxygen consumption (IC50 = 0.52 μM and 0.17 μM, respectively). This study also suggests that DM-MitoQ, which is a more hydrophobic analog of MitoQ (logP: 10.1 and 8.7) devoid of antioxidant function and reactive oxygen species scavenging ability, can inhibit cancer cell proliferation. We conclude that inhibition of mitochondrial oxidative phosphorylation by MitoQ is responsible for inhibition of breast cancer and glioma proliferation and metastasis. Blunting the antioxidant effect using the redox-crippled DM-MitoQ can serve as a useful negative control in corroborating the involvement of free radical-mediated processes (e.g., ferroptosis, protein oxidation/nitration) using MitoQ in other oxidative pathologies.
    Keywords:  5-Diisopropyloxy-phosphoryl-5-methyl-1-pyrroline-N-Oxide; DIPPMPO; DMF; Dimethylformamide; IUPAC name for MitoQ (mitoquinone mesylate; [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadienyl-yl) decyl triphenylphosphonium methanesulfonate])
  19. Cell Metab. 2023 Jun 07. pii: S1550-4131(23)00185-7. [Epub ahead of print]
      Glucose dependency of cancer cells can be targeted with a high-fat, low-carbohydrate ketogenic diet (KD). However, in IL-6-producing cancers, suppression of the hepatic ketogenic potential hinders the utilization of KD as energy for the organism. In IL-6-associated murine models of cancer cachexia, we describe delayed tumor growth but accelerated cachexia onset and shortened survival in mice fed KD. Mechanistically, this uncoupling is a consequence of the biochemical interaction of two NADPH-dependent pathways. Within the tumor, increased lipid peroxidation and, consequently, saturation of the glutathione (GSH) system lead to the ferroptotic death of cancer cells. Systemically, redox imbalance and NADPH depletion impair corticosterone biosynthesis. Administration of dexamethasone, a potent glucocorticoid, increases food intake, normalizes glucose levels and utilization of nutritional substrates, delays cachexia onset, and extends the survival of tumor-bearing mice fed KD while preserving reduced tumor growth. Our study emphasizes the need to investigate the effects of systemic interventions on both the tumor and the host to accurately assess therapeutic potential. These findings may be relevant to clinical research efforts that investigate nutritional interventions such as KD in patients with cancer.
    Keywords:  GDF-15; IL-6; NADPH; cachexia; cancer; corticosterone; ferroptosis; ketogenic diet; lipid peroxidation; steroid
  20. Free Radic Biol Med. 2023 Jun 12. pii: S0891-5849(23)00493-8. [Epub ahead of print]
      Mucosal healing has emerged as a therapeutic goal to achieve lasting clinical remission in ulcerative colitis. Intestinal repair in response to inflammation presumably requires higher energy supplies for the restoration of intestinal barrier and physiological functions. However, epithelial energy metabolism during intestinal mucosal healing has been little studied, whereas inflammation-induced alterations have been reported in the main energy production site, the mitochondria. The aim of the present work was to assess the involvement of mitochondrial activity and the events influencing their function during spontaneous epithelial repair after colitis induction in mouse colonic crypts. The results obtained show adaptations of colonocyte metabolism during colitis to ensure maximal ATP production for supporting energetic demand by both oxidative phosphorylation and glycolysis in a context of decreased mitochondrial biogenesis and through mitochondrial function restoration during colon epithelial repair. In parallel, colitis-induced mitochondrial ROS production in colonic epithelial cells was rapidly associated with transient expression of GSH-related enzymes. Mitochondrial respiration in colonic crypts was markedly increased during both inflammatory and recovery phases despite decreased expression of several mitochondrial respiratory chain complex subunits after colitis induction. Rapid induction of mitochondrial fusion was associated with mitochondrial function restoration. Finally, in contrast with the kinetics expression of genes involved in mitochondrial oxidative metabolism and in glycolysis, the expression of glutaminase was markedly reduced in the colonic crypts both during colitis and repair phases. Overall, our data suggest that the epithelial repair after colitis induction is characterized by a rapid and transient increased capacity for mitochondrial ATP production in a context of apparent restoration of mitochondrial biogenesis and metabolic reorientation of energy production. The potential implication of energy production adaptations within colonic crypts to sustain mucosal healing in a context of altered fuel supply is discussed.
    Keywords:  Colon epithelium; DSS-Induced colitis; Mitochondrial respiration and dynamics; Oxidative stress response; Spontaneous epithelial repair
  21. Nat Protoc. 2023 Jun 16.
      Mitochondria are key bioenergetic organelles involved in many biosynthetic and signaling pathways. However, their differential contribution to specific functions of cells within complex tissues is difficult to dissect with current methods. The present protocol addresses this need by enabling the ex vivo immunocapture of cell-type-specific mitochondria directly from their tissue context through a MitoTag reporter mouse. While other available methods were developed for bulk mitochondria isolation or more abundant cell-type-specific mitochondria, this protocol was optimized for the selective isolation of functional mitochondria from medium-to-low-abundant cell types in a heterogeneous tissue, such as the central nervous system. The protocol has three major parts: First, mitochondria of a cell type of interest are tagged via an outer mitochondrial membrane eGFP by crossing MitoTag mice to a cell-type-specific Cre-driver line or by delivery of viral vectors for Cre expression. Second, homogenates are prepared from relevant tissues by nitrogen cavitation, from which tagged organelles are immunocaptured using magnetic microbeads. Third, immunocaptured mitochondria are used for downstream assays, e.g., to probe respiratory capacity or calcium handling, revealing cell-type-specific mitochondrial diversity in molecular composition and function. The MitoTag approach enables the identification of marker proteins to label cell-type-specific organelle populations in situ, elucidates cell-type-enriched mitochondrial metabolic and signaling pathways, and reveals functional mitochondrial diversity between adjacent cell types in complex tissues, such as the brain. Apart from establishing the mouse colony (6-8 weeks without import), the immunocapture protocol takes 2 h and functional assays require 1-2 h.
  22. Dev Cell. 2023 Jun 08. pii: S1534-5807(23)00248-4. [Epub ahead of print]
      During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
    Keywords:  AMP biosynthesis; AMPK; APRT; CRISPR; aging; killifish; longevity; metabolism; nutrient sensing; sex differences
  23. J Theor Biol. 2023 Jun 14. pii: S0022-5193(23)00155-8. [Epub ahead of print] 111558
      Recent studies delineate an intimate crosstalk between apoptosis and inflammation. However, the dynamic mechanism linking them by mitochondrial membrane permeabilization remains elusive. Here, we construct a mathematical model consisting of four functional modules. Bifurcation analysis reveals that bistability stems from Bcl-2 family member interaction and time series shows that the time difference between Cyt c and mtDNA release is around 30 minutes, which are consistent with previous works. The model predicts that Bax aggregation kinetic determines cells to undergo apoptosis or inflammation, and that modulating the inhibitory effect of caspase 3 on IFN-β production allows the concurrent occurrence of apoptosis and inflammation. This work provides a theoretical framework for exploring the mechanism of mitochondrial membrane permeabilization in controlling cell fate.
    Keywords:  Apoptosis; Dynamic mechanism; Inflammation; Mitochondrial inner membrane permeabilization; Mitochondrial outer membrane permeabilization
  24. EMBO Rep. 2023 Jun 12. e56297
      Precise regulation of mitochondrial fusion and fission is essential for cellular activity and animal development. Imbalances between these processes can lead to fragmentation and loss of normal membrane potential in individual mitochondria. In this study, we show that MIRO-1 is stochastically elevated in individual fragmented mitochondria and is required for maintaining mitochondrial membrane potential. We further observe a higher level of membrane potential in fragmented mitochondria in fzo-1 mutants and wounded animals. Moreover, MIRO-1 interacts with VDAC-1, a crucial mitochondrial ion channel located in the outer mitochondrial membrane, and this interaction depends on the residues E473 of MIRO-1 and K163 of VDAC-1. The E473G point mutation disrupts their interaction, resulting in a reduction of the mitochondrial membrane potential. Our findings suggest that MIRO-1 regulates membrane potential and maintains mitochondrial activity and animal health by interacting with VDAC-1. This study provides insight into the mechanisms underlying the stochastic maintenance of membrane potential in fragmented mitochondria.
    Keywords:   Caenorhabditis elegans ; MIRO-1; VDAC-1; mitochondrial fragmentation; mitochondrial membrane potential (ΔΨm)
  25. Med Oncol. 2023 Jun 14. 40(7): 204
      Myelodysplastic syndromes (MDS) are incurable diseases characterized by dysplastic hematopoietic cells, cytopenias in the blood and an inherent tendency for transformation to secondary acute myeloid leukemia (AML). Since most therapies fail to prevent rapid clonal evolution and disease resistance, new and non-invasive predictive markers are needed to monitor patients and adapt the therapeutic strategy. By using ISET, a very sensitive approach to isolate cells larger than mature leukocytes from peripheral blood samples, we looked for cellular markers in 99 patients (158 samples) with MDS and 66 healthy individuals (76 samples) used as controls. We found a total of 680 Giant Cells, defined as cells having a size of 40 microns or larger in 46 MDS patients (80 samples) and 28 Giant Cells in 11 healthy individuals (11 samples). In order to understand if we had enriched from peripheral blood atypical cells of the megakaryocyte line, we studied the Giant Cells using immunolabeling with megakaryocytes and tumor-specific markers. We report that the Giant Cells we found in the peripheral blood of MDS patients primarily express tumor markers. Our results show that Polyploid Giant Cancer Cells (PGCC), similar to those described in solid tumors, are found in the peripheral blood of patients with MDS and suggest the working hypothesis that they could play a role in hematological malignancies.
    Keywords:  Giant cells; ISET; MDS; Myelodysplastic syndromes; PGCC; Polyploid giant cancer cells; Tumor markers
  26. Eur J Med Chem. 2023 Jun 05. pii: S0223-5234(23)00497-X. [Epub ahead of print]258 115531
      Hsp90 isoform-selective inhibitors represent a new paradigm for novel anti-cancer drugs as each of the four isoforms have specific cellular localization, function, and client proteins. The mitochondrial isoform, TRAP1, is the least understood member of the Hsp90 family due to the lack of small molecule tools to study its biological function. Herein, we report novel TRAP1-selective inhibitors used to interrogate TRAP1's biological function along with co-crystal structures of such compounds bound to the N-terminus of TRAP1. Solution of the co-crystal structure allowed for a structure-based approach that resulted in compound 36, which is a 40 nM inhibitor with >250-fold TRAP1 selectivity over Grp94, the isoform with the highest structural similarity to TRAP1 within the N-terminal ATP binding site. Lead compounds 35 and 36 were found to selectively induce TRAP1 client protein degradation without inducing the heat shock response or disrupting Hsp90-cytosolic clients. They were also shown to inhibit OXPHOS, alter cellular metabolism towards glycolysis, disrupt TRAP1 tetramer stability, and disrupt the mitochondrial membrane potential.
  27. J Vis Exp. 2023 May 19.
      Mitochondria are essential for various biological functions, including energy production, lipid metabolism, calcium homeostasis, heme biosynthesis, regulated cell death, and the generation of reactive oxygen species (ROS). ROS are vital for key biological processes. However, when uncontrolled, they can lead to oxidative injury, including mitochondrial damage. Damaged mitochondria release more ROS, thereby intensifying cellular injury and the disease state. A homeostatic process named mitochondrial autophagy (mitophagy) selectively removes damaged mitochondria, which are then replaced by new ones. There are multiple mitophagy pathways, with the common endpoint being the breakdown of the damaged mitochondria in lysosomes. Several methodologies, including genetic sensors, antibody immunofluorescence, and electron microscopy, use this endpoint to quantify mitophagy. Each method for examining mitophagy has its advantages, such as specific tissue/cell targeting (with genetic sensors) and great detail (with electron microscopy). However, these methods often require expensive resources, trained personnel, and a lengthy preparation time before the actual experiment, such as for creating transgenic animals. Here, we present a cost-effective alternative for measuring mitophagy using commercially available fluorescent dyes targeting mitochondria and lysosomes. This method effectively measures mitophagy in the nematode Caenorhabditis elegans and human liver cells, which indicates its potential efficiency in other model systems.
  28. DNA Cell Biol. 2023 Jun 13.
      The mitochondrial permeability transition pore (mPTP) is a channel in the mitochondrial inner membrane that is activated by excessive calcium uptake. In this study, we used a whole-mitoplast patch-clamp approach to investigate the ionic currents associated with mPTP at the level of the whole single mitochondrion. The whole-mitoplast conductance was at the level of 5 to 7 nS, which is consistent with the presence of three to six single mPTP channels per mitochondrion. We found that mPTP currents are voltage dependent and inactivate at negative potential. The currents were inhibited by cyclosporine A and adenosine diphosphate. When mPTP was induced by oxidative stress, currents were partially blocked by the adenine nucleotide translocase inhibitor bongkrekic acid. Our data suggest that the whole-mitoplast patch-clamp approach is a useful method for investigating the biophysical properties and regulation of the mPTP.
    Keywords:  calcium; cyclosporine A; mitochondria; mitochondrial permeability transition; whole-mitoplast patch clamp
  29. Clin Transl Med. 2023 Jun;13(6): e1298
      BACKGROUND: Differentiated thyroid cancer (DTC) affects thousands of lives worldwide each year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) quality of life and might be unnecessary in indolent DTC cases. On the other hand, the lack of biomarkers indicating a potential metastatic thyroid cancer imposes an additional challenge to managing and treating patients with this disease.AIM: The presented clinical setting highlights the unmet need for a precise molecular diagnosis of DTC and potential metastatic disease, which should dictate appropriate therapy.
    MATERIALS AND METHODS: In this article, we present a differential multi-omics model approach, including metabolomics, genomics, and bioinformatic models, to distinguish normal glands from thyroid tumours. Additionally, we are proposing biomarkers that could indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC.
    RESULTS: Normal and tumour thyroid tissue from DTC patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumour cells. The consistency of the DTC metabolic profile allowed us to build a bioinformatic classification model capable of clearly distinguishing normal from tumor thyroid tissues, which might help diagnose thyroid cancer. Moreover, based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intra-tumour heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease.
    DISCUSSION: Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy.
    CONCLUSIONS: Well-designed, prospective translational clinical trials will ultimately show the value of this integrated multi-omics approach and early diagnosis of DTC and potential metastatic PTC.
    Keywords:  intra-tumour heterogeneity; metabolism; metastases; thyroid cancer
  30. Front Chem. 2023 ;11 1058500
      F1-ATPase is a universal multisubunit enzyme and the smallest-known motor that, fueled by the process of ATP hydrolysis, rotates in 120o steps. A central question is how the elementary chemical steps occurring in the three catalytic sites are coupled to the mechanical rotation. Here, we performed cold chase promotion experiments and measured the rates and extents of hydrolysis of preloaded bound ATP and promoter ATP bound in the catalytic sites. We found that rotation was caused by the electrostatic free energy change associated with the ATP cleavage reaction followed by Pi release. The combination of these two processes occurs sequentially in two different catalytic sites on the enzyme, thereby driving the two rotational sub-steps of the 120o rotation. The mechanistic implications of this finding are discussed based on the overall energy balance of the system. General principles of free energy transduction are formulated, and their important physical and biochemical consequences are analyzed. In particular, how exactly ATP performs useful external work in biomolecular systems is discussed. A molecular mechanism of steady-state, trisite ATP hydrolysis by F1-ATPase, consistent with physical laws and principles and the consolidated body of available biochemical information, is developed. Taken together with previous results, this mechanism essentially completes the coupling scheme. Discrete snapshots seen in high-resolution X-ray structures are assigned to specific intermediate stages in the 120o hydrolysis cycle, and reasons for the necessity of these conformations are readily understood. The major roles played by the "minor" subunits of ATP synthase in enabling physiological energy coupling and catalysis, first predicted by Nath's torsional mechanism of energy transduction and ATP synthesis 25 years ago, are now revealed with great clarity. The working of nine-stepped (bMF1, hMF1), six-stepped (TF1, EF1), and three-stepped (PdF1) F1 motors and of the α3β3γ subcomplex of F1 is explained by the same unified mechanism without invoking additional assumptions or postulating different mechanochemical coupling schemes. Some novel predictions of the unified theory on the mode of action of F1 inhibitors, such as sodium azide, of great pharmaceutical importance, and on more exotic artificial or hybrid/chimera F1 motors have been made and analyzed mathematically. The detailed ATP hydrolysis cycle for the enzyme as a whole is shown to provide a biochemical basis for a theory of "unisite" and steady-state multisite catalysis by F1-ATPase that had remained elusive for a very long time. The theory is supported by a probability-based calculation of enzyme species distributions and analysis of catalytic site occupancies by Mg-nucleotides and the activity of F1-ATPase. A new concept of energy coupling in ATP synthesis/hydrolysis based on fundamental ligand substitution chemistry has been advanced, which offers a deeper understanding, elucidates enzyme activation and catalysis in a better way, and provides a unified molecular explanation of elementary chemical events occurring at enzyme catalytic sites. As such, these developments take us beyond binding change mechanisms of ATP synthesis/hydrolysis proposed for oxidative phosphorylation and photophosphorylation in bioenergetics.
    Keywords:  ADP-ATP exchange; ATP theory and mechanism, consistency with physical laws; Boyer's binding change mechanism of ATP synthesis/hydrolysis; Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis and two-ion theory of energy coupling; bioenergetics; ligand displacement/substitution; mode of action of F1-ATPase inhibitors; molecular motors
  31. J Chemother. 2023 Jun 12. 1-11
      Chemotherapy resistance is the major cause of treatment failure in osteosarcoma, the most common primary bone malignancy, and sensitizing therapeutic strategy is required to improve the clinical outcome. In this study, we discovered that navitoclax, a selective inhibitor of Bcl-2/Bcl-xL, effectively combats chemoresistance in osteosarcoma. Our research revealed that Bcl-2, but not Bcl-xL, is upregulated in osteosarcoma cells that are resistant to doxorubicin. However, venetoclax, a specific inhibitor of Bcl-2, did not exhibit activity against doxorubicin-resistant cells. Further analysis showed that depleting either Bcl-2 or Bcl-xL alone was insufficient to overcome doxorubicin resistance. Only by depleting both Bcl-2 and Bcl-xL significantly reduce the viability of doxorubicin-resistant cells. Similarly, navitoclax not only decreased the viability of doxorubicin-resistant cells but also acted synergistically with doxorubicin in cells sensitive to the drug. To confirm the ability of navitoclax to overcome doxorubicin resistance, we conducted experiments using multiple mouse models of osteosarcoma, both doxorubicin-sensitive and doxorubicin-resistant. The results provided confirmation that navitoclax is effective in overcoming doxorubicin resistance. Our findings demonstrate that simultaneous inhibition of Bcl-2 and Bcl-xL could serve as a novel strategy to sensitize chemoresistant osteosarcoma cells. Moreover, our study presents preclinical evidence supporting the potential of a navitoclax and doxorubicin combination therapy for the treatment of osteosarcoma, paving the way for future clinical investigations.
    Keywords:  Bcl-2; Bcl-xL; Osteosarcoma; navitoclax; synergism; venetoclax
  32. Sci Immunol. 2023 Jun 23. 8(84): eade7652
      NLRP3 inflammasome activation is a highly regulated process for controlling secretion of the potent inflammatory cytokines IL-1β and IL-18 that are essential during bacterial infection, sterile inflammation, and disease, including colitis, diabetes, Alzheimer's disease, and atherosclerosis. Diverse stimuli activate the NLRP3 inflammasome, and unifying upstream signals has been challenging to identify. Here, we report that a common upstream step in NLRP3 inflammasome activation is the dissociation of the glycolytic enzyme hexokinase 2 from the voltage-dependent anion channel (VDAC) in the outer membrane of mitochondria. Hexokinase 2 dissociation from VDAC triggers activation of inositol triphosphate receptors, leading to release of calcium from the ER, which is taken up by mitochondria. This influx of calcium into mitochondria leads to oligomerization of VDAC, which is known to form a macromolecule-sized pore in the outer membranes of mitochondria that allows proteins and mitochondrial DNA (mtDNA), often associated with apoptosis and inflammation, respectively, to exit the mitochondria. We observe that VDAC oligomers aggregate with NLRP3 during initial assembly of the multiprotein oligomeric NLRP3 inflammasome complex. We also find that mtDNA is necessary for NLRP3 association with VDAC oligomers. These data, together with other recent work, help to paint a more complete picture of the pathway leading to NLRP3 inflammasome activation.
  33. Cancer Biomark. 2023 May 23.
      BACKGROUND: Acute myeloid leukemia (AML) is a malignant disorder of hematopoietic stem and progenitor cells, characterized by accumulation of immature blasts in the bone marrow and peripheral blood of affected patients. Response to chemotherapy treatment in patients with AML is wide-ranging, and to date there are no adequate molecular biomarkers used to predict clinical outcome.OBJECTIVE: The aim of this study was to identify potential protein biomarkers which could help predict response to induction treatment in AML patients.
    METHODS: Peripheral blood samples were obtained from 15 AML patients both before and after treatment. A comparative proteomic analysis was performed using 2D gel electrophoresis followed by Mass Spectrometry.
    RESULTS: This comparative proteomic study, combined with a protein network analysis, revealed several proteins that could be considered potential biomarkers of poor prognosis in AML: GAPDH which favors increased glucose metabolism; eEF1A1 and Annexin A1 that promote proliferation and migration, cofilin 1 which plays a role in the activation of apoptosis; and GSTP1 which is involved in the processes of detoxification and chemoresistanceCONCLUSIONS: This study gives an insight into a panel of protein biomarkers with prognostic potential that should be further investigated.
    Keywords:  Acute myeloid leukemia; induction therapy; prognosis; proteomics; two-dimensional gel electrophoresis
  34. Sci Rep. 2023 Jun 09. 13(1): 9449
      Hepatocellular carcinoma (HCC) imposes a huge global burden, arising from various etiological factors such as hepatitis virus infection and metabolic syndrome. While prophylactic vaccination and antiviral treatment have decreased the incidence of viral HCC, the growing prevalence of metabolic syndrome has led to an increase in non-viral HCC. To identify genes downregulated and specifically associated with unfavorable outcome in non-viral HCC cases, screening analysis was conducted using publically available transcriptome data. Among top 500 genes meeting the criteria, which were involved in lipid metabolism and mitochondrial function, a serine transporter located on inner mitochondrial membrane SFXN1 was highlighted. SFXN1 protein expression was significantly reduced in 33 of 105 HCC tissue samples, and correlated to recurrence-free and overall survival only in non-viral HCC. Human HCC cells with SFXN1 knockout (KO) displayed higher cell viability, lower fat intake and diminished reactive oxygen species (ROS) production in response to palmitate administration. In a subcutaneous transplantation mouse model, high-fat diet feeding attenuated tumorigenic potential in the control cells, but not in the SFXN1-KO cells. In summary, loss of SFXN1 expression suppresses lipid accumulation and ROS generation, preventing toxic effects from fat overload in non-viral HCC, and predicts clinical outcome of non-viral HCC patients.
  35. EMBO J. 2023 Jun 12. e113908
      Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are linked in the onset and pathogenesis of numerous diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria during ER stress. The PERK signaling arm of the unfolded protein response (UPR) has emerged as a prominent ER stress-responsive signaling pathway that regulates diverse aspects of mitochondrial biology. Here, we show that PERK activity promotes adaptive remodeling of mitochondrial membrane phosphatidic acid (PA) to induce protective mitochondrial elongation during acute ER stress. We find that PERK activity is required for ER stress-dependent increases in both cellular PA and YME1L-dependent degradation of the intramitochondrial PA transporter PRELID1. These two processes lead to the accumulation of PA on the outer mitochondrial membrane where it can induce mitochondrial elongation by inhibiting mitochondrial fission. Our results establish a new role for PERK in the adaptive remodeling of mitochondrial phospholipids and demonstrate that PERK-dependent PA regulation adapts organellar shape in response to ER stress.
    Keywords:  endoplasmic reticulum (ER) stress; mitochondrial morphology; phosphatidic acid; unfolded protein response (UPR)
  36. Mol Metab. 2023 Jun 09. pii: S2212-8778(23)00084-4. [Epub ahead of print] 101750
      Unexplained changes in regulation of branched chain amino acids (BCAA) during diabetes therapy with metformin have been known for years. Here we demonstrate that metformin restricts tertiary control of BCAA cellular uptake, contributing towards therapeutic actions of the drug. In cell studies, we observed diminished uptake of amino acids following metformin treatment of a variety of cell types. Supplementation of media with amino acids attenuated metformin effects, providing an explanation for discrepancies between effective doses in vivo and in vitro observed in most studies. Data-Independent Acquisition proteomics demonstrated that SNAT2 was the most strongly suppressed amino acid transporter in liver cells following metformin treatment, although other transporters were affected. In humans, metformin attenuated increased risk of left ventricular hypertrophy due to the AA allele of KLF15, which is an inducer of BCAA catabolism. In plasma from a double-blind placebo-controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin caused selective accumulation of plasma BCAA and glutamine, consistent with the effects in cells. We conclude that modulation of amino acid homeostasis contributes to therapeutic actions of metformin.
    Keywords:  AMPK; SNAT2; branched chain amino acids; glutamine; mTOR; metformin; rapamycin