bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023‒05‒07
34 papers selected by
Kelsey Fisher-Wellman, East Carolina University

  1. Exp Mol Med. 2023 May 01.
      Dysregulation of cellular metabolism is a hallmark of breast cancer progression and is associated with metastasis and therapeutic resistance. Here, we show that the breast tumor suppressor gene SIM2 promotes mitochondrial oxidative phosphorylation (OXPHOS) using breast cancer cell line models. Mechanistically, we found that SIM2s functions not as a transcription factor but localizes to mitochondria and directly interacts with the mitochondrial respiratory chain (MRC) to facilitate functional supercomplex (SC) formation. Loss of SIM2s expression disrupts SC formation through destabilization of MRC Complex III, leading to inhibition of electron transport, although Complex I (CI) activity is retained. A metabolomic analysis showed that knockout of SIM2s leads to a compensatory increase in ATP production through glycolysis and accelerated glutamine-driven TCA cycle production of NADH, creating a favorable environment for high cell proliferation. Our findings indicate that SIM2s is a novel stabilizing factor required for SC assembly, providing insight into the impact of the MRC on metabolic adaptation and breast cancer progression.
  2. Oncotarget. 2023 May 04. 14 419-425
      While glycolysis is abundant in malignancies, mitochondrial metabolism is significant as well. Mitochondria harbor the enzymes relevant for cellular respiration, which is a critical pathway for both regeneration of reduction equivalents and energy production in the form of ATP. The oxidation of NADH2 and FADH2 are fundamental since NAD and FAD are the key components of the TCA-cycle that is critical to entertain biosynthesis in cancer cells. The TCA-cycle itself is predominantly fueled through carbons from glucose, glutamine, fatty acids and lactate. Targeting mitochondrial energy metabolism appears feasible through several drug compounds that activate the CLPP protein or interfere with NADH-dehydrogenase, pyruvate-dehydrogenase, enzymes of the TCA-cycle and mitochondrial matrix chaperones. While these compounds have demonstrated anti-cancer effects in vivo, recent research suggests which patients most likely benefit from such treatments. Here, we provide a brief overview of the status quo of targeting mitochondrial energy metabolism in glioblastoma and highlight a novel combination therapy.
    Keywords:  carbon tracing; central carbon metabolism; glioblastoma; lactate; metabolism
  3. Methods Mol Biol. 2023 ;2644 3-14
      Mitochondrial respiration is an essential component of cellular metabolism. It is a process of energy conversion through enzymatically mediated reactions, the energy of taken-up substrates transformed to the ATP production. Seahorse equipment allows to measure oxygen consumption in living cells and estimate key parameters of mitochondrial respiration in real-time mode. Four key mitochondrial respiration parameters could be measured: basal respiration, ATP-production coupled respiration, maximal respiration, and proton leak. This approach demands the application of mitochondrial inhibitors-oligomycin to inhibit ATP synthase, FCCP-to uncouple the inner mitochondrial membrane and allow maximum electron flux through the electron transport chain, rotenone, and antimycin A to inhibit complexes I and III, respectively. This chapter describes two protocols of seahorse measurements performed on iPSC-derived cardiomyocytes and TAZ knock-out C2C12 cell line.
    Keywords:  Cell viability; Cellular respiration; Knock-out cells; Mitochondrial function; iPSC-derived cardiomyocytes
  4. Sci Rep. 2023 May 04. 13(1): 7254
      N-acetylcysteine (NAC) has been used as an antioxidant drug in tumor cells and preclinical mice tumor xenografts, and it improves adaptive immunotherapy in melanoma. NAC is not readily bioavailable and is used in high concentrations. The effects of NAC have been attributed to its antioxidant and redox signaling role in mitochondria. New thiol-containing molecules targeted to mitochondria are needed. Here, mitochondria-targeted NAC with a 10-carbon alkyl side chain attached to a triphenylphosphonium group (Mito10-NAC) that is functionally similar to NAC was synthesized and studied. Mito10-NAC has a free sulfhydryl group and is more hydrophobic than NAC. Mito10-NAC is nearly 2000-fold more effective than NAC in inhibiting several cancer cells, including pancreatic cancer cells. Methylation of NAC and Mito10-NAC also inhibited cancer cell proliferation. Mito10-NAC inhibits mitochondrial complex I-induced respiration and, in combination with monocarboxylate transporter 1 inhibitor, synergistically decreased pancreatic cancer cell proliferation. Results suggest that the antiproliferative effects of NAC and Mito10-NAC are unlikely to be related to their antioxidant mechanism (i.e., scavenging of reactive oxygen species) or to the sulfhydryl group-dependent redox modulatory effects.
  5. J Med Chem. 2023 May 02.
      Targeting oxidative phosphorylation (OXPHOS) has emerged as a promising therapeutic strategy for cancer therapy. Here, we discovered a 1H-1,2,3-triazole derivative HP661 as a highly potent and orally available OXPHOS inhibitor that effectively blocked the activity of mitochondrial complex I. HP661 specifically compromised the mitochondrial oxygen consumption of high-OXPHOS lung cancer cells but not that of low-OXPHOS lung cancer cells or normal cells in the low nanomolar range. Notably, mitogen-activated protein kinase kinase (MEK) inhibitor (trametinib)-resistant lung cancer cells with high levels of OXPHOS also showed marked sensitivity to HP661, as indicated by decreased clonogenic growth and increased cell apoptosis upon treatment. In a mouse model of high-OXPHOS lung cancer, HP661 treatment not only significantly suppressed tumor growth but also augmented the therapeutic efficacy of trametinib by impairing tumor mitochondrial respiration. In summary, we identified HP661 as a highly effective OXPHOS inhibitor to abrogate the growth of high OXPHOS-dependent tumors and conquer high OXPHOS-mediated drug resistance.
  6. Proc Natl Acad Sci U S A. 2023 May 09. 120(19): e2218999120
      Mitochondrial Ca2+ uptake is mediated by the mitochondrial uniporter complex (mtCU) that includes a tetramer of the pore-forming subunit, MCU, a scaffold protein, EMRE, and the EF-hand regulatory subunit, MICU1 either homodimerized or heterodimerized with MICU2/3. MICU1 has been proposed to regulate Ca2+ uptake via the mtCU by physically occluding the pore and preventing Ca2+ flux at resting cytoplasmic [Ca2+] (free calcium concentration) and to increase Ca2+ flux at high [Ca2+] due to cooperative activation of MICUs EF-hands. However, mtCU and MICU1 functioning when its EF-hands are unoccupied by Ca2+ is poorly studied due to technical limitations. To overcome this barrier, we have studied the mtCU in divalent-free conditions by assessing the Ru265-sensitive Na+ influx using fluorescence-based measurement of mitochondrial matrix [Na+] (free sodium concentration) rise and the ensuing depolarization and swelling. We show an increase in all these measures of Na+ uptake in MICU1KO cells as compared to wild-type (WT) and rescued MICU1KO HEK cells. However, mitochondria in WT cells and MICU1 stable-rescued cells still allowed some Ru265-sensitive Na+ influx that was prevented by MICU1 in excess upon acute overexpression. Thus, MICU1 restricts the cation flux across the mtCU in the absence of Ca2+, but even in cells with high endogenous MICU1 expression such as HEK, some mtCU seem to lack MICU1-dependent gating. We also show rearrangement of the mtCU and altered number of functional channels in MICU1KO and different rescues, and loss of MICU1 during mitoplast preparation, that together might have obscured the pore-blocking function of MICU1 in divalent-free conditions in previous studies.
    Keywords:  EMRE; MICU1; Na+; mitochondrial calcium uniporter; mitoplast
  7. Sci Adv. 2023 May 03. 9(18): eadf0115
      The metabolite acetyl-CoA is necessary for both lipid synthesis in the cytosol and histone acetylation in the nucleus. The two canonical precursors to acetyl-CoA in the nuclear-cytoplasmic compartment are citrate and acetate, which are processed to acetyl-CoA by ATP-citrate lyase (ACLY) and acyl-CoA synthetase short-chain 2 (ACSS2), respectively. It is unclear whether other substantial routes to nuclear-cytosolic acetyl-CoA exist. To investigate this, we generated cancer cell lines lacking both ACLY and ACSS2 [double knockout (DKO) cells]. Using stable isotope tracing, we show that both glucose and fatty acids contribute to acetyl-CoA pools and histone acetylation in DKO cells and that acetylcarnitine shuttling can transfer two-carbon units from mitochondria to cytosol. Further, in the absence of ACLY, glucose can feed fatty acid synthesis in a carnitine responsive and carnitine acetyltransferase (CrAT)-dependent manner. The data define acetylcarnitine as an ACLY- and ACSS2-independent precursor to nuclear-cytosolic acetyl-CoA that can support acetylation, fatty acid synthesis, and cell growth.
  8. Nat Commun. 2023 May 02. 14(1): 2502
      Group 3 medulloblastoma (G3 MB) carries the worst prognosis of all MB subgroups. MYC oncoprotein is elevated in G3 MB tumors; however, the mechanisms that support MYC abundance remain unclear. Using metabolic and mechanistic profiling, we pinpoint a role for mitochondrial metabolism in regulating MYC. Complex-I inhibition decreases MYC abundance in G3 MB, attenuates the expression of MYC-downstream targets, induces differentiation, and prolongs male animal survival. Mechanistically, complex-I inhibition increases inactivating acetylation of antioxidant enzyme SOD2 at K68 and K122, triggering the accumulation of mitochondrial reactive oxygen species that promotes MYC oxidation and degradation in a mitochondrial pyruvate carrier (MPC)-dependent manner. MPC inhibition blocks the acetylation of SOD2 and oxidation of MYC, restoring MYC abundance and self-renewal capacity in G3 MB cells following complex-I inhibition. Identification of this MPC-SOD2 signaling axis reveals a role for metabolism in regulating MYC protein abundance that has clinical implications for treating G3 MB.
  9. Nat Commun. 2023 May 02. 14(1): 2504
      Methionine restriction (MR) provides metabolic benefits in many organisms. However, mechanisms underlying the MR-induced effect remain incompletely understood. Here, we show in the budding yeast S. cerevisiae that MR relays a signal of S-adenosylmethionine (SAM) deprivation to adapt bioenergetic mitochondria to nitrogenic anabolism. In particular, decreases in cellular SAM constrain lipoate metabolism and protein lipoylation required for the operation of the tricarboxylic acid (TCA) cycle in the mitochondria, leading to incomplete glucose oxidation with an exit of acetyl-CoA and α-ketoglutarate from the TCA cycle to the syntheses of amino acids, such as arginine and leucine. This mitochondrial response achieves a trade-off between energy metabolism and nitrogenic anabolism, which serves as an effector mechanism promoting cell survival under MR.
  10. Sci Adv. 2023 May 03. 9(18): eadf0138
      Proliferating cells rely on acetyl-CoA to support membrane biogenesis and acetylation. Several organelle-specific pathways are available for provision of acetyl-CoA as nutrient availability fluctuates, so understanding how cells maintain acetyl-CoA homeostasis under such stresses is critically important. To this end, we applied 13C isotope tracing cell lines deficient in these mitochondrial [ATP-citrate lyase (ACLY)]-, cytosolic [acetyl-CoA synthetase (ACSS2)]-, and peroxisomal [peroxisomal biogenesis factor 5 (PEX5)]-dependent pathways. ACLY knockout in multiple cell lines reduced fatty acid synthesis and increased reliance on extracellular lipids or acetate. Knockout of both ACLY and ACSS2 (DKO) severely stunted but did not entirely block proliferation, suggesting that alternate pathways can support acetyl-CoA homeostasis. Metabolic tracing and PEX5 knockout studies link peroxisomal oxidation of exogenous lipids as a major source of acetyl-CoA for lipogenesis and histone acetylation in cells lacking ACLY, highlighting a role for inter-organelle cross-talk in supporting cell survival in response to nutrient fluctuations.
  11. J Cancer Res Clin Oncol. 2023 May 04.
      PURPOSE: Although cisplatin-containing chemotherapy has been utilized as a front-line treatment for cervical cancer, intrinsic and acquired resistance of cisplatin remains a major hurdle for the durable and curative therapeutic response. We thus aim to identify novel regulator of cisplatin resistance in cervical cancer cells.METHODS: Real-time PCR and western blotting analysis were employed to determine the expression of BRSK1 in normal and cisplatin-resistant cells. Sulforhodamine B assay was conducted to assess the sensitivity of cervical cancer cells to cisplatin. Seahorse Cell Mito Stress Test assay was utilized to evaluate the mitochondrial respiration in cervical cancer cells.
    RESULTS: BRSK1 expression was upregulated in cisplatin-treated cervical cancer patient tumors and cell lines compared with untreated tumors and cell lines. Depletion of BRSK1 significantly enhanced the sensitivity of both normal and cisplatin-resistant cervical cancer cells to cisplatin treatment. Moreover, BRSK1-mediated regulation of cisplatin sensitivity is conducted by a subpopulation of BRSK1 residing in the mitochondria of cervical cancer cells and is dependent on its kinase enzymatic activity. Mechanistically, BRSK1 confers cisplatin resistance via the regulation of mitochondrial respiration. Importantly, treatment with mitochondrial inhibitor in cervical cancer cells phenocopied the BRSK1 depletion-mediated mitochondria dysfunction and cisplatin sensitization. Of note, we observed that high BRSK1 expression is correlated with poor prognosis in cisplatin-treated cervical cancer patients.
    CONCLUSION: Our study defines BRSK1 as a novel regulator of cisplatin sensitivity, identifying that targeting BRSK1-regulated mitochondrial respiration could be a useful approach for enhancing the efficacy of cisplatin-based chemotherapy in cervical cancer patients.
    Keywords:  Cervical cancer; Chemoresistance; Chemosensitivity; Cisplatin resistance; Mitochondrial function
  12. Biochim Biophys Acta Mol Basis Dis. 2023 May 02. pii: S0925-4439(23)00106-0. [Epub ahead of print] 166740
      Phenethyl isothiocyanate (PEITC), a kind of isothiocyanate available in cruciferous vegetables, exhibits inhibitory effects on cancers. PEITC has been extensively recorded for its effect on regulation of redox status in cancer cells. Our previous studies revealed that PEITC induced ROS-dependent cell death in osteosarcoma. Mitochondria are the main sites for ROS generation and play significant role in deciding cell fate. To dissect the mechanism of PEITC's action on osteosarcoma cells, we detected changes on mitochondrial network, function and metabolism in K7M2 and 143B cells. Here, PEITC induced cytosolic, lipid and mitochondrial ROS production in osteosarcoma cells. It changed mitochondrial morphology from elongated to punctate network and decreased mitochondrial mass. Meantime, PEITC increased mitochondrial transmembrane potential in short time, decreased it with time prolonged, and later collapsed it in K7M2 cells, and reduced it in 143B cells. PEITC inhibited proliferation potential of osteosarcoma cells with damage on mitochondrial respiratory chain complexes. Further, PEITC-treated osteosarcoma cells experienced a sudden increase in ATP level, and later its content was decreased. Moreover, PEITC downregulated the expressions of mitochondrial respiratory chain complexes including COX IV, UQCR, SDHA and NDUFA9 in 143B cells and COX IV in K7M2 cells. At last, by using Rho 0 cells derived from K7M2 and 143B cells, we found that osteosarcoma cells that depleted mtDNA were less sensitive to PEITC-induced changes on cellular morphology, cytoskeleton filament, mitochondrial transmembrane potential and ROS generation. In conclusion, our study demonstrated that mitochondria may play important role in PEITC-induced oxidative cell death in osteosarcoma cells.
    Keywords:  Cell death; Mitochondria; Mitochondrial respiratory chain; Osteosarcoma; Oxidative stress; PEITC
  13. Front Immunol. 2023 ;14 1120670
      Background: Acute myeloid leukemia (AML) is a common hematologic malignancy characterized by poor prognoses and high recurrence rates. Mitochondrial metabolism has been increasingly recognized to be crucial in tumor progression and treatment resistance. The purpose of this study was to examined the role of mitochondrial metabolism in the immune regulation and prognosis of AML.Methods: In this study, mutation status of 31 mitochondrial metabolism-related genes (MMRGs) in AML were analyzed. Based on the expression of 31 MMRGs, mitochondrial metabolism scores (MMs) were calculated by single sample gene set enrichment analysis. Differential analysis and weighted co-expression network analysis were performed to identify module MMRGs. Next, univariate Cox regression and the least absolute and selection operator regression were used to select prognosis-associated MMRGs. A prognosis model was then constructed using multivariate Cox regression to calculate risk score. We validated the expression of key MMRGs in clinical specimens using immunohistochemistry (IHC). Then differential analysis was performed to identify differentially expressed genes (DEGs) between high- and low-risk groups. Functional enrichment, interaction networks, drug sensitivity, immune microenvironment, and immunotherapy analyses were also performed to explore the characteristic of DEGs.
    Results: Given the association of MMs with prognosis of AML patients, a prognosis model was constructed based on 5 MMRGs, which could accurately distinguish high-risk patients from low-risk patients in both training and validation datasets. IHC results showed that MMRGs were highly expressed in AML samples compared to normal samples. Additionally, the 38 DEGs were mainly related to mitochondrial metabolism, immune signaling, and multiple drug resistance pathways. In addition, high-risk patients with more immune-cell infiltration had higher Tumor Immune Dysfunction and Exclusion scores, indicating poor immunotherapy response. mRNA-drug interactions and drug sensitivity analyses were performed to explore potential druggable hub genes. Furthermore, we combined risk score with age and gender to construct a prognosis model, which could predict the prognosis of AML patients.
    Conclusion: Our study provided a prognostic predictor for AML patients and revealed that mitochondrial metabolism is associated with immune regulation and drug resistant in AML, providing vital clues for immunotherapies.
    Keywords:  acute myeloid leukemia; drug sensitivity; mitochondrial metabolism; prognostic model; tumor microenvironment
  14. Elife. 2023 May 02. pii: e84330. [Epub ahead of print]12
      Mitochondrial biogenesis requires the import of >1,000 mitochondrial preproteins from the cytosol. Most studies on mitochondrial protein import are focused on the core import machinery. Whether and how the biophysical properties of substrate preproteins affect overall import efficiency is underexplored. Here, we show that protein traffic into mitochondria can be disrupted by amino acid substitutions in a single substrate preprotein. Pathogenic missense mutations in ADP/ATP translocase 1 (ANT1), and its yeast homolog Aac2, cause the protein to accumulate along the protein import pathway, thereby obstructing general protein translocation into mitochondria. This impairs mitochondrial respiration, cytosolic proteostasis and cell viability independent of ANT1's nucleotide transport activity. The mutations act synergistically, as double mutant Aac2/ANT1 cause severe clogging primarily at the Translocase of the Outer Membrane (TOM) complex. This confers extreme toxicity in yeast. In mice, expression of a super-clogger ANT1 variant led to neurodegeneration and an age-dependent dominant myopathy that phenocopy ANT1-induced human disease, suggesting clogging as a mechanism of disease. More broadly, this work implies the existence of uncharacterized amino acid requirements for mitochondrial carrier proteins to avoid clogging and subsequent disease.
    Keywords:  S. cerevisiae; biochemistry; chemical biology; mouse
  15. Mol Carcinog. 2023 May 05.
      Kirsten rat sarcoma virus (KRAS) oncogene, found in 20%-25% of lung cancer patients, potentially regulates metabolic reprogramming and redox status during tumorigenesis. Histone deacetylase (HDAC) inhibitors have been investigated for treating KRAS-mutant lung cancer. In the current study, we investigate the effect of HDAC inhibitor (HDACi) belinostat at clinically relevant concentration on nuclear factor erythroid 2-related factor 2 (NRF2) and mitochondrial metabolism for the treatment of KRAS-mutant human lung cancer. LC-MS metabolomic study of belinostat on mitochondrial metabolism was performed in G12C KRAS-mutant H358 non-small cell lung cancer cells. Furthermore, l-methionine (methyl-13 C) isotope tracer was used to explore the effect of belinostat on one-carbon metabolism. Bioinformatic analyses of metabolomic data were performed to identify the pattern of significantly regulated metabolites. To study the effect of belinostat on redox signaling ARE-NRF2 pathway, luciferase reporter activity assay was done in stably transfected HepG2-C8 cells (containing pARE-TI-luciferase construct), followed by qPCR analysis of NRF2 and its target gene in H358 cells, which was further confirmed in G12S KRAS-mutant A549 cells. Metabolomic study reveals significantly altered metabolites related to redox homeostasis, including tricarboxylic acid (TCA) cycle metabolites (citrate, aconitate, fumarate, malate, and α-ketoglutarate); urea cycle metabolites (Arginine, ornithine, argino-succinate, aspartate, and fumarate); and antioxidative glutathione metabolism pathway (GSH/GSSG and NAD/NADH ratio) after belinostat treatment. 13 C stable isotope labeling data indicates potential role of belinostat in creatine biosynthesis via methylation of guanidinoacetate. Moreover, belinostat downregulated the expression of NRF2 and its target gene NAD(P)H:quinone oxidoreductase 1 (NQO1), indicating anticancer effect of belinostat is mediated, potentially via Nrf2-regulated glutathione pathway. Another HDACi panobinostat also showed potential anticancer effect in both H358 and A549 cells via Nrf2 pathway. In summary, belinostat is effective in killing KRAS-mutant human lung cancer cells by regulating mitochondrial metabolism which could be used as biomarkers for preclinical and clinical studies.
    Keywords:  HDAC inhibitor; KRAS mutation; NRF2; lung cancer; mitochondrial metabolism
  16. Cell Biol Int. 2023 May 03.
      Although starvation stress can alter the homeostasis of mitochondria and promote autophagy, there is still a lack of research focusing on the connection between them. In this study, we found that, accompanied by the upregulation of autophagy flux, the membrane mitochondrial potential (MMP), the content of reactive oxygen species (ROS), the production of ATP, and the copy number of mitochondrial DNA (mt-DNA) were changed when limiting amino acids supply. We screened and analyzed altered genes related to mitochondrial homeostasis under starvation stress and verified that the expression of mitochondrial transcription factor A (TFAM) was prominently upregulated. Inhibition of TFAM led to the change of mitochondrial function and homeostasis, caused the decrease of SQSTM1 mRNA stability and ATG101 protein level and restricted the autophagy process of cells under amino acid deficient conditions. In addition, the TFAM knockdown and starvation treatment aggravated the DNA damage and reduced proliferation rate of tumor cells. Therefore, our data shows the correlation between mitochondria homeostasis and autophagy, reveals the effect of TFAM on autophagy flux under starvation stress and provides experimental basis for the combined starvation therapy targeting mitochondria to inhibit tumor growth.
    Keywords:  TFAM; autophagy; cell proliferation; homeostasis; mitochondria
  17. Methods Mol Biol. 2023 ;2644 65-80
      Flow cytometry has been a vital tool in cell biology for decades based on its versatile ability to detect and quantifiably measure both physical and chemical attributes of individual cells within a larger population. More recently, advances in flow cytometry have enabled nanoparticle detection. This is particularly applicable to mitochondria, which, as intracellular organelles have distinct subpopulations that can be evaluated based on differences in functional, physical, and chemical attributes, in a manner analogous to cells. This includes distinctions based on size, mitochondrial membrane potential (ΔΨm), chemical properties, and protein expression on the outer mitochondrial membrane in intact, functional organelles and internally in fixed samples. This method allows for multiparametric analysis of subpopulations of mitochondria, as well as collection for downstream analysis down to the level of a single organelle. The present protocol describes a framework for analysis and sorting mitochondria by flow cytometry, termed fluorescence activated mitochondrial sorting (FAMS), based on the separation of individual mitochondria belonging to subpopulations of interest using fluorescent dyes and antibody labeling.
    Keywords:  Analytical tools; Flow cytometry; Mitochondria; Mitochondrial heterogeneity; Organelles
  18. J Biol Chem. 2023 Apr 27. pii: S0021-9258(23)01789-1. [Epub ahead of print] 104761
      Mitochondrial Complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how Complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered Complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally-related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that Complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of Complex II is well beyond respiration. This review uses a semi-chronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of Complex II and its subunits because these findings have infused new directions into an established field.
    Keywords:  Complex II; Krebs cycle; bacterial chemotaxis; cancer metabolism; hypoxia; inflammation; ischemia-reperfusion; paraganglioma; pheochromocytoma; respirasome; reverse electron transfer; succinate dehydrogenase; succinate signaling
  19. Oncol Lett. 2023 May;25(5): 214
      Copper ions can bind directly to lipoylated components of the tricarboxylic acid (TCA) cycle, triggering the aggregation of mitochondrial lipoylated proteins and the destabilization of Fe-S cluster proteins, resulting in copper-dependent cell death. Dihydrolipoamide dehydrogenase (DLD) is a key protein of the TCA cycle and constitutes the E3 component of the α-ketoglutarate dehydrogenase complex, which is deeply interconnected with the mitochondrial electron transfer chain in the TCA cycle. Tumor cells demonstrate dependency on glutaminolysis fuelling to carry out the TCA cycle and essential biosynthetic processes supporting tumor growth. Therefore, DLD plays an important role in the tumor biological process. However, to the best of our knowledge, no pan-cancer analysis is currently available for DLD. Therefore, the present study first explored the DLD expression profile in 33 tumors in publicly available datasets, including TIMER2, GEPIA2, UALCAN, cBioPortal and STRING. TIMER2, GEPIA2 and UALCAN were used for exploring gene expression; survival prognosis was detected by GEPIA2; genetic alteration was analysed by cBioPortal; immune infiltration data was obtained from TIMER2; interacting proteins of DLD were detected by STRING. DLD was found to be highly expressed in colon, liver, lung, stomach, renal, corpus uteri endometrial and ovarian cancers compared with normal tissues, and its high expression was associated with poorer prognosis in ovarian cancer. To the best of our knowledge, the present study provided the first comprehensive pan-cancer analysis of the oncogenic role of DLD across different tumors types. As the expression of DLD in ovarian cancer was high, and high expression is associated with poor prognosis, experimental verification of DLD in ovarian cancer was conducted. In the present study, DLD expression was found to be high in the ovarian cancer OC3 cell line, compared with the normal ovarian epithelial IOSE80 cell line by reverse transcription-quantitative PCR analysis. After knockdown of DLD expression, it was found that DLD regulated metabolic pathways by suppressing the intracellular NAD+/NADH ratio, which then in turn suppressed tumor cell proliferation detected by MTT assay. In conclusion, the present pan-cancer analysis of DLD demonstrated that DLD expression was associated with the clinical prognosis, immune infiltration and tumor mutational burden in 33 tumor types, and experimental verification in ovarian cancer was conducted. These results may contribute to the understanding of the role of DLD in tumorigenesis.
    Keywords:  cancer; cuproptosis; dihydrolipoamide dehydrogenase; pan-cancer analysis; prognosis
  20. J Biol Chem. 2023 May 02. pii: S0021-9258(23)01800-8. [Epub ahead of print] 104772
      The ability of cells to store and rapidly mobilize energy reserves in response to nutrient availability is essential for survival. Breakdown of carbon stores produces acetyl-coenzyme-A (AcCoA), which fuels essential metabolic pathways and is also the acyl donor for protein lysine acetylation. Histones are abundant and highly acetylated proteins, accounting for 40% - 75% of cellular protein acetylation. Notably, histone acetylation is sensitive to AcCoA availability and nutrient replete conditions induce a substantial accumulation of acetylation on histones. Deacetylation releases acetate, which can be recycled to AcCoA, suggesting that deacetylation could be mobilized as an AcCoA source to feed downstream metabolic processes under nutrient depletion. While the notion of histones as a metabolic reservoir has been frequently proposed, experimental evidence has been lacking. Therefore, to test this concept directly, we used acetate-dependent ATP citrate lyase-deficient fibroblasts (Acly-/- MEFs) and designed a pulse-chase experimental system to trace deacetylation-derived acetate and its incorporation into AcCoA. We found that dynamic protein deacetylation in Acly-/- MEFs contributed carbons to AcCoA and proximal downstream metabolites. However, deacetylation had no significant effect on acyl-CoA pool sizes, and even at maximal acetylation, deacetylation transiently supplied less than 10% of cellular AcCoA. Together, our data reveal that although histone acetylation is dynamic and nutrient-sensitive, its potential for maintaining cellular AcCoA-dependent metabolic pathways is limited compared to cellular demand.
    Keywords:  Acetylation; acetate; acetyl-coenzyme A; histone; metabolism; stable isotope tracing
  21. Adv Biol (Weinh). 2023 May 04. e2200202
      Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.
    Keywords:  automated serial block-face SEM; focused ion beam SEM; mitochondria-endoplasmic reticulum communication; mitochondrial dynamics; mitochondrial morphology; serial-section TEM
  22. Aging Cell. 2023 May 03. e13842
      Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.
    Keywords:  DNA sequencing; aging; human; mitochondrial DNA; skeletal muscle; substantia nigra
  23. bioRxiv. 2023 Apr 17. pii: 2023.04.13.536805. [Epub ahead of print]
      Acute myeloid leukemia (AML) is an aggressive disease with complex and heterogeneous biology. Although several genomic classifications have been proposed, there is a growing interest in going beyond genomics to stratify AML. In this study, we profile the sphingolipid family of bioactive molecules in 213 primary AML samples and 30 common human AML cell lines. Using an integrative approach, we identify two distinct sphingolipid subtypes in AML characterized by a reciprocal abundance of hexosylceramide (Hex) and sphingomyelin (SM) species. The two Hex-SM clusters organize diverse samples more robustly than known AML driver mutations and are coupled to latent transcriptional states. Using transcriptomic data, we develop a machine-learning classifier to infer the Hex-SM status of AML cases in TCGA and BeatAML clinical repositories. The analyses show that the sphingolipid subtype with deficient Hex and abundant SM is enriched for leukemic stemness transcriptional programs and comprises an unappreciated high-risk subgroup with poor clinical outcomes. Our sphingolipid-focused examination of AML identifies patients least likely to benefit from standard of care and raises the possibility that sphingolipidomic interventions could switch the subtype of AML patients who otherwise lack targetable alternatives.Key Points: 1.Sphingolipidomics separates acute myeloid leukemia (AML) patients and cell lines into two subtypes.2.The subtype with low hexosylceramide and high sphingomyelin defines a new high-risk subtype with poor clinical outcomes.
  24. Free Radic Biol Med. 2023 May 01. pii: S0891-5849(23)00400-8. [Epub ahead of print]
      Pharmacological ascorbate (P-AscH-; high dose given intravenously) generates H2O2 that is selectively cytotoxic to cancer compared to normal cells. The RAS-RAF-ERK1/2 is a major signaling pathway in cancers carrying RAS mutations and is known to be activated by H2O2. Activated ERK1/2 also phosphorylates the GTPase dynamin-related protein (Drp1), which then stimulates mitochondrial fission. Although early generation of H2O2 leads to cytotoxicity of cancer cells, we hypothesized that sustained increases in H2O2 activate ERK-Drp1 signaling, leading to an adaptive response; inhibition of this pathway would enhance the toxicity of P-AscH-. Increases in phosphorylated ERK and Drp1 induced by P-AscH- were reversed with genetic and pharmacological inhibitors of ERK and Drp1, as well as in cells lacking functional mitochondria. P-AscH- increased Drp1 colocalization to mitochondria, decreased mitochondrial volume, increased disconnected components, and decreased mitochondrial length, suggesting an increase in mitochondrial fission 48 h after treatment with P-AscH-. P-AscH- decreased clonogenic survival; this was enhanced by genetic and pharmacological inhibition of both ERK and Drp1. In murine tumor xenografts, the combination of P-AscH- and pharmacological inhibition of Drp1 increased overall survival. These results suggest that P-AscH- induces sustained changes in mitochondria, through activation of the ERK/Drp1 signaling pathway, an adaptive response. Inhibition of this pathway enhanced the toxicity P-AscH- to cancer cells.
    Keywords:  Mitochondrial dynamics; Mitochondrial fission; Oxidative stress; Pharmacological ascorbate
  25. Oncol Rep. 2023 Jun;pii: 124. [Epub ahead of print]49(6):
      Ovarian cancer (OC) is a refractory cancer that shows recurrence due to the acquisition of resistance to anticancer drugs, including cisplatin. However, the molecular mechanism underlying the acquisition of cisplatin resistance by cancer cells remains largely unknown. In the present study, two sets of ovarian endometrioid carcinoma cell lines were used: The parental A2780 cell line, the OVK18 cell line, and their derived cisplatin‑resistant cells. It was found that cisplatin could induce ferroptosis in these parental cells by enhancing mitochondrial membrane potential and lipid peroxidation as assessed by flow cytometric analysis, and that expression of Ferredoxin1 (Fdx1), an iron‑sulfur protein localized to the mitochondria, could be upregulated in cisplatin‑resistant cells in the absence of cisplatin. Intriguingly, it was shown that the siRNA‑mediated depletion of Fdx1 in cisplatin‑resistant cells resulted in enhanced ferroptosis by increasing the mitochondrial membrane potential and lipid peroxidation induced by cisplatin. By examining Fdx1 expression with immunohistochemical analysis in clinical specimens from patients with OC, higher expression of Fdx1 was detected in cisplatin‑resistant specimens than in cisplatin‑sensitive specimens. Collectively, these results indicated that Fdx1 may be a novel and suitable diagnostic/prognostic marker and therapeutic molecular target for the treatment of cisplatin‑resistant OC.
    Keywords:  Ferredoxin1; cisplatin resistance; ferroptosis; mitochondria; ovarian cancer
  26. Sci Rep. 2023 May 05. 13(1): 7339
      Renal cancer cells constitute a paradigm of tumor cells with a glycolytic reprogramming which drives metabolic alterations favouring cell survival and transformation. We studied the expression and activity of pyruvate dehydrogenase kinases (PDK1-4), key enzymes of the energy metabolism, in renal cancer cells. We analysed the expression, subcellular distribution and clinicopathological correlations of PDK1-4 by immunohistochemistry of tumor tissue microarray samples from a cohort of 96 clear cell renal cell carcinoma (ccRCC) patients. Gene expression analysis was performed on whole tumor tissue sections of a subset of ccRCC samples. PDK2 and PDK3 protein expression in tumor cells correlated with lower patient overall survival, whereas PDK1 protein expression correlated with higher patient survival. Gene expression analysis revealed molecular association of PDK2 and PDK3 expression with PI3K signalling pathway, as well as with T cell infiltration and exhausted CD8 T cells. Inhibition of PDK by dichloroacetate in human renal cancer cell lines resulted in lower cell viability, which was accompanied by an increase in pAKT. Together, our findings suggest a differential role for PDK enzymes in ccRCC progression, and highlight PDK as actionable metabolic proteins in relation with PI3K signalling and exhausted CD8 T cells in ccRCC.
  27. Anal Chem. 2023 May 03.
      Mitochondrial viscosity affects metabolite diffusion and mitochondrial metabolism and is associated with many diseases. However, the accuracy of mitochondria-targeting fluorescent probes in measuring viscosity is unsatisfactory because these probes can diffuse from mitochondria during mitophagy with a decreased mitochondrial membrane potential (MMP). To avoid this problem, by incorporating different alkyl side chains into dihydroxanthene fluorophores (denoted as DHX), we developed six near-infrared (NIR) probes for the accurate detection of mitochondrial viscosity, and the sensitivity to viscosity and the mitochondrial targeting and anchoring capability of these probes increased by increasing the alkyl chain length. Among them, DHX-V-C12 had a highly selective response to viscosity variations with minimum interference from polarity, pH, and other biologically relevant species. Furthermore, DHX-V-C12 was used to monitor the mitochondrial viscosity changes of HeLa cells treated by ionophores (nystatin, monensin) or under starvation conditions. We hope that this mitochondrial targeting and anchoring strategy based on increasing the alkyl chain length will be a general strategy for the accurate detection of mitochondrial analytes, enabling the accurate study of mitochondrial functions.
  28. Hum Mol Genet. 2023 May 02. pii: ddad062. [Epub ahead of print]
      The recognition that cytosolic mtDNA activates cGAS-STING innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early-onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels, and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.
  29. J Transl Med. 2023 May 06. 21(1): 307
      BACKGROUND: Cervical cancer remains one of the most prevalent cancers worldwide. Accumulating evidence suggests that specificity protein 1 (Sp1) plays a pivotal role in tumour progression. The underlying role and mechanism of Sp1 in tumour progression remain unclear.METHODS: The protein level of Sp1 in tumour tissues was determined by immunohistochemistry. The effect of Sp1 expression on the biological characteristics of cervical cancer cells was assessed by colony, wound healing, transwell formation, EdU, and TUNEL assays. Finally, the underlying mechanisms and effects of Sp1 on the mitochondrial network and metabolism of cervical cancer were analysed both in vitro and in vivo.
    RESULTS: Sp1 expression was upregulated in cervical cancer. Sp1 knockdown suppressed cell proliferation both in vitro and in vivo, while overexpression of Sp1 had the opposite effects. Mechanistically, Sp1 facilitated mitochondrial remodelling by regulating mitofusin 1/2 (Mfn1/2), OPA1 mitochondrial dynamin-like GTPase (Opa1), and dynamin 1-like (Drp1). Additionally, the Sp1-mediated reprogramming of glucose metabolism played a critical role in the progression of cervical cancer cells.
    CONCLUSIONS: Our study demonstrates that Sp1 plays a vital role in cervical tumorigenesis by regulating the mitochondrial network and reprogramming glucose metabolism. Targeting Sp1 could be an effective strategy for the treatment of cervical cancer.
    Keywords:  Cervical cancer; Glycolysis; Mitochondrial network; Specificity protein 1 (Sp1)
  30. Blood. 2023 May 05. pii: blood.2022018651. [Epub ahead of print]
      RNA-binding proteins (RBPs) form a large and diverse class of factors many members of which are overexpressed in hematological malignancies. RBPs participate in various processes of mRNA metabolism and prevent harmful DNA:RNA hybrids or R-loops. Here we report that PIWIL4, a germ stem cell-associated RBP belonging to the RNase H-like superfamily, is overexpressed in acute myeloid leukemia patients and is essential for leukemic stem cell function and AML growth, but dispensable for healthy human hematopoietic stem cells. In AML cells, PIWIL4 binds to a small number of known piwi-interacting RNA. It instead largely interacts with mRNA annotated to protein-coding genic regions and enhancers that are enriched for genes associated with cancer and human myeloid progenitor gene signatures. PIWIL4 depletion in AML cells downregulates human myeloid progenitor signature and LSC-associated genes and upregulates DNA damage signalling. We demonstrate that PIWIL4 is an R-loop resolving enzyme that prevents R-loop accumulation on a subset of AML and LSC-associated genes, and maintains their expression. It also prevents DNA damage, replication stress, and activation of the ATR pathway in AML cells. PIWIL4 depletion potentiates sensitivity to pharmacological inhibition of the ATR pathway and creates a pharmacologically actionable dependency in AML cells.
  31. J Biol Chem. 2023 May 02. pii: S0021-9258(23)01802-1. [Epub ahead of print] 104774
      Mitochondria are signaling organelles implicated in cancer, but the mechanisms are elusive. Here, we show that Parkin, an E3 ubiquitin ligase altered in Parkinson's Disease (PD), forms a complex with the regulator of cell motility, Kindlin-2 (K2) at mitochondria of tumor cells. In turn, Parkin ubiquitinates Lys581 and Lys582 using Lys48 linkages, resulting in proteasomal degradation of K2 and shortened half-life from ∼5 h to ∼1.5 h. Loss of K2 inhibits focal adhesion turnover and β1 integrin activation, impairs membrane lamellipodia size and frequency, and inhibits mitochondrial dynamics, altogether suppressing tumor cell-ECM interactions, migration, and invasion. Conversely, Parkin does not affect tumor cell proliferation, cell cycle transitions or apoptosis. Expression of a Parkin ubiquitination-resistant K2 Lys581Ala/Lys582Ala double mutant is sufficient to restore membrane lamellipodia dynamics, correct mitochondrial fusion/fission, and preserve single-cell migration and invasion. In a 3D model of mammary gland developmental morphogenesis, impaired K2 ubiquitination drives multiple oncogenic traits of EMT, increased cell proliferation, reduced apoptosis and disrupted basal-apical polarity. Therefore, deregulated K2 is a potent oncogene and its ubiquitination by Parkin enables mitochondria-associated metastasis suppression.
    Keywords:  Kindlin-2; Parkin; metastasis suppression; tumor cell motility; ubiquitination
  32. RSC Med Chem. 2023 Apr 26. 14(4): 710-714
      A concise semi-synthesis of the Aspidosperma alkaloids, (-)-jerantinine A and (-)-melodinine P, and derivatives thereof, is reported. The novel compounds were shown to have potent activity against MDA-MB-231 triple-negative breast cancer cells. Furthermore, unbiased metabolomics and live cell reporter assays reveal (-)-jerantinine A alters cellular redox metabolism and induces oxidative stress that coincides with cell cycle arrest.
  33. Front Med. 2023 May 03.
      Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/β-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.
    Keywords:  ABT-199; Wnt3a; acute myeloid leukemia; acyl-CoA synthetase long chain family member 5; palmitoylation
  34. Mol Pharm. 2023 May 03.
      Progesterone (PR) is an endogenous steroid hormone that activates the progesterone receptor (PgR) and is known to play a critical role in cancer progression. Herein, we report the development of cationic lipid-conjugated PR derivatives by covalently conjugating progesterone with cationic lipids of varying hydrocarbon chain lengths (n = 6-18) through a succinate linker. Cytotoxicity studies performed on eight different cancer cell lines reveal that PR10, one of the lead derivatives, exerts notable toxicity (IC50 = 4-12 μM) in cancer cells irrespective of their PgR expression status and remains largely nontoxic to noncancerous cells. Mechanistic studies show that PR10 induces G2/M-phase cell cycle arrest in cancer cells, leading to apoptosis and cell death by inhibiting the PI3K/AKT cell survival pathway and p53 upregulation. Further, in vivo study shows that PR10 treatment significantly reduces melanoma tumor growth and prolongs the overall survival of melanoma tumor-bearing C57BL/6J mice. Interestingly, PR10 readily forms stable self-aggregates of ∼190 nm size in an aqueous environment and exhibits selective uptake into cancerous cell lines. In vitro uptake mechanism studies in various cell lines (cancerous cell lines B16F10, MCF7, PC3, and noncancerous cell line HEK293) using endocytosis inhibition proves that PR10 nanoaggregates enter selectively into the cancer cells predominantly using macropinocytosis and/or caveolae-mediated endocytosis. Overall, this study highlights the development of a self-aggregating cationic derivative of progesterone with anticancer activity, and its cancer cell-selective accumulation in nanoaggregate form holds great potential in the field of targeted drug delivery.
    Keywords:  PI3K/AKT pathway; apoptosis; cationic lipid; endocytosis pathway; progesterone; tumor