bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2022–10–09
24 papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Cell Metab. 2022 Sep 28. pii: S1550-4131(22)00395-3. [Epub ahead of print]
      The structural and functional organization of the mitochondrial respiratory chain (MRC) remains intensely debated. Here, we show the co-existence of two separate MRC organizations in human cells and postmitotic tissues, C-MRC and S-MRC, defined by the preferential expression of three COX7A subunit isoforms, COX7A1/2 and SCAFI (COX7A2L). COX7A isoforms promote the functional reorganization of distinct co-existing MRC structures to prevent metabolic exhaustion and MRC deficiency. Notably, prevalence of each MRC organization is reversibly regulated by the activation state of the pyruvate dehydrogenase complex (PDC). Under oxidative conditions, the C-MRC is bioenergetically more efficient, whereas the S-MRC preferentially maintains oxidative phosphorylation (OXPHOS) upon metabolic rewiring toward glycolysis. We show a link between the metabolic signatures converging at the PDC and the structural and functional organization of the MRC, challenging the widespread notion of the MRC as a single functional unit and concluding that its structural heterogeneity warrants optimal adaptation to metabolic function.
    Keywords:  COX7A1–2; SCAFI/COX7RP/COX7A2L; bioenergetics; glycolysis; metabolic switch; mitochondria; oxidative metabolism; pyruvate dehydrogenase; respiratory chain organizations; respiratory supercomplexes
    DOI:  https://doi.org/10.1016/j.cmet.2022.09.005
  2. Front Oncol. 2022 ;12 1000106
      Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the clonal proliferation of antibody producing plasma cells. Despite the use of next generation proteasome inhibitors (PI), immunomodulatory agents (IMiDs) and immunotherapy, the development of therapy refractory disease is common, with approximately 20% of MM patients succumbing to aggressive treatment-refractory disease within 2 years of diagnosis. A large emphasis is placed on understanding inter/intra-tumoral genetic, epigenetic and transcriptomic changes contributing to relapsed/refractory disease, however, the contribution of cellular metabolism and intrinsic/extrinsic metabolites to therapy sensitivity and resistance mechanisms is less well understood. Cancer cells depend on specific metabolites for bioenergetics, duplication of biomass and redox homeostasis for growth, proliferation, and survival. Cancer therapy, importantly, largely relies on targeting cellular growth, proliferation, and survival. Thus, understanding the metabolic changes intersecting with a drug's mechanism of action can inform us of methods to elicit deeper responses and prevent acquired resistance. Knowledge of the Warburg effect and elevated aerobic glycolysis in cancer cells, including MM, has allowed us to capitalize on this phenomenon for diagnostics and prognostics. The demonstration that mitochondria play critical roles in cancer development, progression, and therapy sensitivity despite the inherent preference of cancer cells to engage aerobic glycolysis has re-invigorated deeper inquiry into how mitochondrial metabolism regulates tumor biology and therapy efficacy. Mitochondria are the sole source for coupled respiration mediated ATP synthesis and a key source for the anabolic synthesis of amino acids and reducing equivalents. Beyond their core metabolic activities, mitochondria facilitate apoptotic cell death, impact the activation of the cytosolic integrated response to stress, and through nuclear and cytosolic retrograde crosstalk maintain cell fitness and survival. Here, we hope to shed light on key mitochondrial functions that shape MM development and therapy sensitivity.
    Keywords:  B cell; metabolism; mitochondria; multiple myeloma; therapy
    DOI:  https://doi.org/10.3389/fonc.2022.1000106
  3. Cell Rep. 2022 Oct 04. pii: S2211-1247(22)01286-4. [Epub ahead of print]41(1): 111445
      MCL-1 is an anti-apoptotic BCL-2 family protein essential for survival of diverse cell types and is a major driver of cancer and chemoresistance. The mechanistic basis for the oncogenic supremacy of MCL-1 among its anti-apoptotic homologs is unclear and implicates physiologic roles of MCL-1 beyond apoptotic suppression. Here we find that MCL-1-dependent hematologic cancer cells specifically rely on fatty acid oxidation (FAO) as a fuel source because of metabolic wiring enforced by MCL-1 itself. We demonstrate that FAO regulation by MCL-1 is independent of its anti-apoptotic activity, based on metabolomic, proteomic, and genomic profiling of MCL-1-dependent leukemia cells lacking an intact apoptotic pathway. Genetic deletion of Mcl-1 results in transcriptional downregulation of FAO pathway proteins such that glucose withdrawal triggers cell death despite apoptotic blockade. Our data reveal that MCL-1 is a master regulator of FAO, rendering MCL-1-driven cancer cells uniquely susceptible to treatment with FAO inhibitors.
    Keywords:  BCL-2 family; CP: Cancer; CP: Metabolism; MCL-1; apoptosis; cancer; fatty acid oxidation; metabolism
    DOI:  https://doi.org/10.1016/j.celrep.2022.111445
  4. Elife. 2022 Oct 06. pii: e80396. [Epub ahead of print]11
      Mitochondria harbor an independent genome, called mitochondrial DNA (mtDNA), which contains essential metabolic genes. Although mtDNA mutations occur at high frequency, they are inherited infrequently, indicating that germline mechanisms limit their accumulation. To determine how germline mtDNA is regulated, we examined the control of mtDNA quantity and quality in C. elegans primordial germ cells (PGCs). We show that PGCs combine strategies to generate a low point in mtDNA number by segregating mitochondria into lobe-like protrusions that are cannibalized by adjacent cells, and by concurrently eliminating mitochondria through autophagy, reducing overall mtDNA content twofold. As PGCs exit quiescence and divide, mtDNAs replicate to maintain a set point of ~200 mtDNAs per germline stem cell. Whereas cannibalism and autophagy eliminate mtDNAs stochastically, we show that the kinase PTEN-induced kinase 1 (PINK1), operating independently of Parkin and autophagy, preferentially reduces the fraction of mutant mtDNAs. Thus, PGCs employ parallel mechanisms to control both the quantity and quality of the founding population of germline mtDNAs.
    Keywords:  C. elegans; PINK1; autophagy; bottleneck; cell biology; developmental biology; mitochondrial DNA; primordial germ cells; purifying selection
    DOI:  https://doi.org/10.7554/eLife.80396
  5. BMB Rep. 2022 Oct 05. pii: 5705. [Epub ahead of print]
      Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holocomplex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated.
  6. Aging Cell. 2022 Oct 05. e13721
      Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.
    Keywords:  aerobic fitness; calorie restriction; fatty acid oxidation; fuel switching; lifespan; mitochondrial acetylation; mitochondrial respiration; sirtuins
    DOI:  https://doi.org/10.1111/acel.13721
  7. Mol Cell. 2022 Oct 06. pii: S1097-2765(22)00895-4. [Epub ahead of print]82(19): 3661-3676.e8
      Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.
    Keywords:  calcium channels; cardiac pathophysiology; cellular metabolism; intracellular calcium signaling; membrane-transport mechanisms; mitochondrial physiology; mitochondrial proteases; organellar channels; protein complexes
    DOI:  https://doi.org/10.1016/j.molcel.2022.09.006
  8. Commun Biol. 2022 Oct 05. 5(1): 1060
      Effective protein import from cytosol is critical for mitochondrial functions and metabolic regulation. We describe here the mammalian muscle-specific and systemic consequences to disrupted mitochondrial matrix protein import by targeted deletion of the mitochondrial HSP70 co-chaperone GRPEL1. Muscle-specific loss of GRPEL1 caused rapid muscle atrophy, accompanied by shut down of oxidative phosphorylation and mitochondrial fatty acid oxidation, and excessive triggering of proteotoxic stress responses. Transcriptome analysis identified new responders to mitochondrial protein import toxicity, such as the neurological disease-linked intermembrane space protein CHCHD10. Besides communication with ER and nucleus, we identified crosstalk of distressed mitochondria with peroxisomes, in particular the induction of peroxisomal Acyl-CoA oxidase 2 (ACOX2), which we propose as an ATF4-regulated peroxisomal marker of integrated stress response. Metabolic profiling indicated fatty acid enrichment in muscle, a shift in TCA cycle intermediates in serum and muscle, and dysregulated bile acids. Our results demonstrate the fundamental importance of GRPEL1 and provide a robust model for detecting mammalian inter-organellar and systemic responses to impaired mitochondrial matrix protein import and folding.
    DOI:  https://doi.org/10.1038/s42003-022-04034-z
  9. Oncogenesis. 2022 Oct 04. 11(1): 59
      Glioblastoma is a difficult-to-cure disease owing to its malignancy. Under normal circumstances, cancer is dependent on the glycolytic system for growth, and mitochondrial oxidative phosphorylation (OXPHOS) is not well utilized. Here, we investigated the efficacy of mitochondria-targeted glioblastoma therapy in cell lines including U87MG, LN229, U373, T98G, and two patient-derived stem-like cells. When glioblastoma cells were exposed to a glucose-starved condition (100 mg/l), they rely on mitochondrial OXPHOS for growth, and mitochondrial translation product production is enhanced. Under these circumstances, drugs that inhibit mitochondrial translation, called antimicrobial agents, can cause mitochondrial dysfunction and thus can serve as a therapeutic option for glioblastoma. Antimicrobial agents activated the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 pathway, resulting in increased expression of heme oxygenase-1. Accumulation of lipid peroxides resulted from the accumulation of divalent iron, and cell death occurred via ferroptosis. In conclusion, mitochondrial OXPHOS is upregulated in glioblastoma upon glucose starvation. Under this condition, antimicrobial agents cause cell death via ferroptosis. The findings hold promise for the treatment of glioblastoma.
    DOI:  https://doi.org/10.1038/s41389-022-00437-z
  10. J Hazard Mater. 2022 Sep 29. pii: S0304-3894(22)01877-5. [Epub ahead of print]442 130083
      The biological effects of the pesticide and mitochondrial complex I inhibitor tebufenpyrad (TEBU) on liver cells were investigated by combining proteomics and metabolomics. Both cell culture media and cellular lysates were analyzed in dose-response and kinetic experiments on the HepaRG cell line. Responses were compared with those obtained on primary human and rat hepatocytes. A multitude of phase I and II metabolites (>80) mainly common to HepaRG cells and primary hepatocytes and an increase in metabolization enzymes were observed. Synthesis of mitochondrion and oxidative phosphorylation complex constituents, fatty acid oxidation, and cellular uptake of lipids were induced to compensate for complex I inhibition and the decrease in ATP intracellular contents caused by TEBU. Secretion of the 20 S circulating proteasome and overall inhibition of acute inflammation followed by IL-6 secretion in later stages were observed in HepaRG cells. These effects were associated with a decrease in STAT1 and STAT3 transcription factor abundances, but with different kinetics. Based on identified TEBU targets, docking experiments, and nuclear receptor reporter assays, we concluded that liver cell response to TEBU is mediated by its interaction with the PPARγ transcription factor.
    Keywords:  Hepatocytes; Metabolomics; Mitochondrial respiratory complex I inhibitor; Pesticide; Proteomics
    DOI:  https://doi.org/10.1016/j.jhazmat.2022.130083
  11. Front Endocrinol (Lausanne). 2022 ;13 932754
      Mitochondria-eating protein (MIEAP) is a molecule important for non-canonical mitophagy and thought to be a tumor suppressor. Our previous study found that MIEAP expression is defective in thyroid oncocytomas, irrespective of being benign or malignant, and also in non-oncocytic thyroid cancers. Thyroid oncocytomas are composed of large polygonal cells with eosinophilic cytoplasm that is rich in abnormal mitochondria. Thus, our data indicate that, together with increased mitochondrial biogenesis that compensates for the dysfunction of the mitochondria, MIEAP plays a critical role in the accumulation of mitochondria in thyroid oncocytic tumors, whereas a defective MIEAP expression alone is not sufficient for mitochondrial accumulation in non-oncocytic cancers with normal mitochondria. To clarify whether MIEAP is a tumor suppressor in the thyroids and whether MIEAP knockout (KO) alone is sufficient for the oncocytic phenotype and also to extend our effort toward canonical mitophagy (a selective autophagy), we here conducted mouse studies using genetically engineered mice. BrafCA/wt mice developed thyroid cancers 1 year after intrathyroidal injection of adenovirus expressing Cre, while cancer development was observed at 6 months in adenovirus-Cre-injected BrafCA/wt;MieapKO/KO and BrafCA/wt;Atg5flox/flox mice [where autophagy-related 5 (ATG5) is a component of autophagic machinery], although KO of either molecule alone was not sufficient for cancer development. These data demonstrate that MIEAP or ATG5 KO accelerated thyroid cancer development. However, cancers in adenovirus-Cre-injected BrafCA/wt ;MieapKO/KO and BrafCA/wt ;Atg5flox/flox mice were not oncocytic. In conclusion, we here show that MIEAP and ATG5 are both tumor suppressors in thyroid carcinogenesis, but as we have anticipated from our previous data, KO of either molecule does not confer the oncocytic phenotype to BRAFV600E-positive thyroid cancers. The combination of disruptive mitochondrial function and impaired mitochondrial quality control may be necessary to establish a mouse model of thyroid oncocytoma.
    Keywords:  ATG5; MIEAP; mitochondria; oncocytoma; thyroid cancer
    DOI:  https://doi.org/10.3389/fendo.2022.932754
  12. Trends Pharmacol Sci. 2022 Oct 01. pii: S0165-6147(22)00199-7. [Epub ahead of print]
      Mitochondrial ATP synthase synthesizes ATP for cellular functions; however, under various conditions, including ischemia, it hydrolyzes ATP, primarily to re-energize the mitochondria. ATP synthase inhibitory factor 1 (ATPIF1) inhibits hydrolysis of ATP by ATP synthase. Wyant and colleagues recently demonstrated that G-protein-coupled receptor 35 (GPR35) is involved in this process. This finding provides an additional framework for the novel discovery of potential therapeutic molecules against ischemia/reperfusion (I/R) injury.
    Keywords:  ATP inhibitory factor 1; ATP synthase; G-protein-coupled receptor 35; anti-ischemic interaction; kynurenic acid; mitochondria
    DOI:  https://doi.org/10.1016/j.tips.2022.09.003
  13. Nat Metab. 2022 Oct 03.
      γ-Aminobutyrate (GAB), the biochemical form of (GABA) γ-aminobutyric acid, participates in shaping physiological processes, including the immune response. How GAB metabolism is controlled to mediate such functions remains elusive. Here we show that GAB is one of the most abundant metabolites in CD4+ T helper 17 (TH17) and induced T regulatory (iTreg) cells. GAB functions as a bioenergetic and signalling gatekeeper by reciprocally controlling pro-inflammatory TH17 cell and anti-inflammatory iTreg cell differentiation through distinct mechanisms. 4-Aminobutyrate aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA) cycle to maximize carbon allocation in promoting TH17 cell differentiation. By contrast, the absence of ABAT activity in iTreg cells enables GAB to be exported to the extracellular environment where it acts as an autocrine signalling metabolite that promotes iTreg cell differentiation. Accordingly, ablation of ABAT activity in T cells protects against experimental autoimmune encephalomyelitis (EAE) progression. Conversely, ablation of GABAA receptor in T cells worsens EAE. Our results suggest that the cell-autonomous control of GAB on CD4+ T cells is bimodal and consists of the sequential action of two processes, ABAT-dependent mitochondrial anaplerosis and the receptor-dependent signalling response, both of which are required for T cell-mediated inflammation.
    DOI:  https://doi.org/10.1038/s42255-022-00638-1
  14. Nature. 2022 Oct 05.
      DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event-the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation1-3. Here we analyse whole-genome sequences from 66,083 people-including 12,509 people with cancer-and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 104 births and once in every 103 cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.
    DOI:  https://doi.org/10.1038/s41586-022-05288-7
  15. Cancer Metab. 2022 Oct 03. 10(1): 14
       BACKGROUND: Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, possesses characteristic alterations to multiple metabolic pathways, including the accumulation of cytosolic lipid droplets. However, the pathways that drive lipid droplet accumulation in ccRCC cells and their importance to cancer biology remain poorly understood.
    METHODS: We sought to identify the carbon sources necessary for lipid droplet accumulation using Oil red O staining and isotope-tracing lipidomics. The role of the acyl-CoA synthetase (ACSL) family members, an important group of lipid metabolic enzymes, was investigated using siRNA and drug mediated inhibition. CTB and XTT assays were performed to determine the effect of ACSL3 knockdown and lipid starvation on ccRCC cell viability and shRNA was used to study the effect of ACSL3 in an orthotopic mouse model. The relationship between ferroptosis susceptibility of ccRCC and ACSL3 controlled lipid metabolism was examined using CTB and FACS-based assays. The importance of 5-LOX in ferroptosis susceptibility in ccRCC was shown with XTT survival assays, and the expression level and predictive value of 5-LOX in TCGA ccRCC data was assessed.
    RESULTS: We found that ccRCC cells obtain the necessary substrates for lipid droplet accumulation by metabolizing exogenous serum derived lipids and not through de novo lipogenesis. We show that this metabolism of exogenous fatty acids into lipid droplets requires the enzyme acyl-CoA synthetase 3 (ACSL3) and not other ACSL family proteins. Importantly, genetic or pharmacologic suppression of ACSL3 is cytotoxic to ccRCC cells in vitro and causes a reduction of tumor weight in an orthotopic mouse model. Conversely, ACSL3 inhibition decreases the susceptibility of ccRCC cells to ferroptosis, a non-apoptotic form of cell death involving lipid peroxidation. The sensitivity of ccRCC to ferroptosis is also highly dependent on the composition of exogenous fatty acids and on 5-lipoxygenase (5-LOX), a leukotriene producing enzyme which produces lipid peroxides that have been implicated in other cancers but not in ccRCC.
    CONCLUSIONS: ACSL3 regulates the accumulation of lipid droplets in ccRCC and is essential for tumor growth. In addition, ACSL3 also modulates ferroptosis sensitivity in a manner dependent on the composition of exogenous fatty acids. Both functions of ACSL3 could be exploited for ccRCC therapy.
    Keywords:  5-lipoxygenase (5-LOX); Acyl-CoA synthetase 3 (ACSL3); Clear cell renal cell carcinoma (ccRCC); Ferroptosis; Lipid droplets; Lipid metabolism
    DOI:  https://doi.org/10.1186/s40170-022-00290-z
  16. Proc Natl Acad Sci U S A. 2022 Oct 11. 119(41): e2207303119
      In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.
    Keywords:  biomolecular condensates; mitochondrial genome; phase separation; transcription; vesicles
    DOI:  https://doi.org/10.1073/pnas.2207303119
  17. Proc Natl Acad Sci U S A. 2022 Oct 11. 119(41): e2203480119
      Fatty acids are an important source of energy and a key component of phospholipids in membranes and organelles. Saturated fatty acids (SFAs) are converted into unsaturated fatty acids (UFAs) by stearoyl Co-A desaturase (SCD), an enzyme active in cancer. Here, we studied how the dynamics between SFAs and UFAs regulated by SCD impacts ovarian cancer cell survival and tumor progression. SCD depletion or inhibition caused lower levels of UFAs vs. SFAs and altered fatty acyl chain plasticity, as demonstrated by lipidomics and stimulated Raman scattering (SRS) microscopy. Further, increased levels of SFAs resulting from SCD knockdown triggered endoplasmic reticulum (ER) stress response with brisk activation of IRE1α/XBP1 and PERK/eIF2α/ATF4 axes. Disorganized ER membrane was visualized by electron microscopy and SRS imaging in ovarian cancer cells in which SCD was knocked down. The induction of long-term mild ER stress or short-time severe ER stress by the increased levels of SFAs and loss of UFAs led to cell death. However, ER stress and apoptosis could be readily rescued by supplementation with UFAs and reequilibration of SFA/UFA levels. The effects of SCD knockdown or inhibition observed in vitro translated into suppression of intraperitoneal tumor growth in ovarian cancer xenograft models. Furthermore, a combined intervention using an SCD inhibitor and an SFA-enriched diet initiated ER stress in tumors growing in vivo and potently blocked their dissemination. In all, our data support SCD as a key regulator of the cancer cell fate under metabolic stress and point to treatment strategies targeting the lipid balance.
    Keywords:  ER stress; SRS imaging; fatty acids; lipid metabolism; ovarian cancer
    DOI:  https://doi.org/10.1073/pnas.2203480119
  18. J Virol. 2022 Oct 05. e0082822
      Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis. IMPORTANCE Many viruses target host cell mitochondria to create a microenvironment conducive to viral dissemination. Dengue virus also exploits host cell mitochondria to facilitate its viral life cycle. Dengue infection of liver cells leads to severe mitochondrial injury and inhibition of proteins that regulate mitochondrial quality control and biogenesis, thereby disrupting mitochondrial homeostasis. A defect in mitochondrial quality control leads to the accumulation of damaged mitochondria and promotes cellular injury. This leads to the release of mitochondrial damage-associated molecular patterns (mt-DAMPs) into the cell cytoplasm and extracellular milieu. These mt-DAMPs activate the naive immune cells and trigger proinflammatory signaling, leading to the release of cytokines and chemokines, which may trigger systemic inflammation and contribute to dengue disease pathogenesis. In correlation with this, we observed high levels of cell-free mitochondrial DNA in dengue patient blood. This study provides insight into how the disruption of mitochondrial quality control in dengue-infected cells can trigger inflammation and drive dengue disease pathogenesis.
    Keywords:  autophagy; dengue virus; inflammation; mitochondria; mitochondrial homeostasis; mitochondrial quality control; mitophagy; mt-DNA; necrosis
    DOI:  https://doi.org/10.1128/jvi.00828-22
  19. Cell Metab. 2022 Oct 04. pii: S1550-4131(22)00399-0. [Epub ahead of print]34(10): 1428-1430
      Activated brown adipose tissue (BAT) consumes copious amounts of circulating nutrients to fuel thermogenesis. Recently writing in Nature, Seki et al. show that this property can be leveraged to limit glucose availability for cancer cells and slow tumor growth, thereby adding cancer to the growing list of diseases that can potentially be treated by activating BAT.
    DOI:  https://doi.org/10.1016/j.cmet.2022.09.009
  20. Front Oncol. 2022 ;12 992260
      Mitochondrial SMAC/Diablo induces apoptosis by binding the inhibitor of apoptosis proteins (IAPs), thereby activating caspases and, subsequently, apoptosis. Previously, we found that despite its pro-apoptotic activity, SMAC/Diablo is overexpressed in cancer, and demonstrated that in cancer it possesses new essential and non-apoptotic functions that are associated with regulating phospholipid synthesis including modulating mitochondrial phosphatidylserine decarboxylase activity. Here, we demonstrate additional functions for SMAC/Diablo associated with inflammation and immunity. CRISPR/Cas9 SMAC/Diablo-depleted A549 lung cancer cells displayed inhibited cell proliferation and migration. Proteomics analysis of these cells revealed altered expression of proteins associated with lipids synthesis and signaling, vesicular transport and trafficking, metabolism, epigenetics, the extracellular matrix, cell signaling, and neutrophil-mediated immunity. SMAC-KO A549 cell-showed inhibited tumor growth and proliferation and activated apoptosis. The small SMAC-depleted "tumor" showed a morphology of alveoli-like structures, reversed epithelial-mesenchymal transition, and altered tumor microenvironment. The SMAC-lacking tumor showed reduced expression of inflammation-related proteins such as NF-kB and TNF-α, and of the PD-L1, associated with immune system suppression. These results suggest that SMAC is involved in multiple processes that are essential for tumor growth and progression. Thus, targeting SMAC's non-canonical function is a potential strategy to treat cancer.
    Keywords:  SMAC; cell proliferation; immunosuppression; inflammation; lung cancer
    DOI:  https://doi.org/10.3389/fonc.2022.992260
  21. Blood. 2022 Oct 07. pii: blood.2022016580. [Epub ahead of print]
      Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FLT3 is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. While protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared to normal human hematopoietic stem and progenitor cells (HSPCs), the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-ITD-driven leukemia and extend the survival of leukemic mice. Further, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.
    DOI:  https://doi.org/10.1182/blood.2022016580
  22. Cancer Discov. 2022 Oct 05. 12(10): 2237-2239
      In this issue, Abrego and colleagues describe an unexpected role for the mitochondrial enzyme glutamic-oxaloacetic transaminase (GOT2) in pancreatic cancer, whereby it acts as a nuclear fatty acid transporter binding to and activating the PPARδ nuclear receptor. In turn, the GOT2-PPARδaxis drives immunosuppression by suppressing T cell-mediated antitumor immunity. See related article by Abrego et al., p. 2414 (3).
    DOI:  https://doi.org/10.1158/2159-8290.CD-22-0845
  23. Life Sci. 2022 Sep 28. pii: S0024-3205(22)00710-X. [Epub ahead of print]309 121010
       AIMS: Short-chain fatty acids (SCFAs) are produced by gut microbiota from dietary fiber. Since absorbed SCFAs could be introduced into the tricarboxylic acid (TCA) cycle in host cells, the relationships between SCFAs and TCA cycle intermediates might influence to energy metabolism in the human body. For this reason, information on profile changes between SCFAs and TCA cycle intermediates could help unveil pathological mechanisms of gastric cancer.
    MAIN METHODS: A gas chromatography-tandem mass spectrometry (GC-MS/MS) method was developed to simultaneously determine SCFAs and TCA cycle intermediates in human plasma from patients with chronic superficial gastritis (CSG), intestinal metaplasia (IM), and gastric cancer. We applied a tetra-alkyl ammonium pairing method to prevent loss of volatile SCFAs and base decarboxylation of TCA cycle intermediates during sample preparation. To assess gastric diseases, metabolic alterations of SCFAs and TCA cycle intermediates in human plasma with gastric disorders were analyzed by their plasma levels.
    KEY FINDINGS: Significantly different metabolic alterations based on the plasma levels of SCFAs and TCA cycle intermediates were investigated in cancer metabolic pathways. Not only propionate and butyrate, mainly produced by gut microbiota, were significantly decreased, but also cis-aconitate, α-ketoglutarate, and fumarate were significantly increased in plasma with IM or gastric cancer, compared to CSG. Further, based on ratios of product to precursor, three metabolic pathways (succinate/propionate, succinate/α-ketoglutarate, and cis-aconitate/citrate) were supposed to be distorted between gastric diseases.
    SIGNIFICANCE: In conclusion, propionate, cis-aconitate, α-ketoglutarate, and fumarate could be used to assess the progression of gastric cancer.
    Keywords:  Gas chromatography; Gastric cancer; Human plasma; Short-chain fatty acids; TCA cycle intermediates; Tandem mass spectrometry
    DOI:  https://doi.org/10.1016/j.lfs.2022.121010
  24. BMC Cancer. 2022 Oct 04. 22(1): 1038
       BACKGROUND: The incidence of colorectal cancer (CRC) is considered to be the third-highest malignant tumor among all carcinomas. The alterations in cellular bioenergetics (metabolic reprogramming) are associated with several malignant phenotypes in CRC, such as tumor cell proliferation, invasion, metastasis, chemotherapy resistance, as well as promotes its immune escape. However, the expression pattern of metabolism-associated genes that mediate metabolic reprogramming in CRC remains unknown.
    METHODS: In this study, we screened out CPT2 by investigating the function of a series of metabolism-related genes in CRC progression by integrating the data from the TCGA and GEO databases. Next, we collected CRC tissues (n = 24) and adjacent non-tumor tissues (n = 8) and analyzed mRNA levels by qRT-PCR, and proteins levels of CPT2 in CRC cell lines by western blotting. CCK-8 assay, colony formation assay, Edu assay and flow cytometry assay were performed to assess the effects of CPT2 on proliferation in vitro.
    RESULTS: We identified 236 metabolism-related genes that are differentially expressed in colorectal cancer, of which 49 up-regulated and 187 down-regulated, and found CPT2 as the most significant gene associated with favorable prognosis in CRC. It was revealed that CPT2 expression was consistently down-regulated in CRC cell lines and tissues. Moreover, knockdown of CPT2 could promote the proliferative ability of CRC cells, whereas over-expression of CPT2 significantly suppressed the cell growth.
    CONCLUSION: In summary, CPT2 can provide new insights about the progression and occurrence of the tumor as it acts as an independent prognostic factor in CRC sufferers.
    Keywords:  CPT2; Colorectal cancer; GEO; Metabolism; TCGA
    DOI:  https://doi.org/10.1186/s12885-022-10126-0