bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2022–05–29
forty-one papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Cancers (Basel). 2022 May 18. pii: 2485. [Epub ahead of print]14(10):
      Acute myeloid leukemia (AML) is characterized by the accumulation of undifferentiated blast cells in the bone marrow and blood. In most cases of AML, relapse frequently occurs due to resistance to chemotherapy. Compelling research results indicate that drug resistance in cancer cells is highly dependent on the intracellular levels of reactive oxygen species (ROS). Modulating ROS levels is therefore a valuable strategy to overcome the chemotherapy resistance of leukemic cells. In this study, we evaluated the efficiency of diphenyleneiodonium (DPI)-a well-known inhibitor of ROS production-in targeting AML cells. Results showed that although inhibiting cytoplasmic ROS production, DPI also triggered an increase in the mitochondrial ROS levels, caused by the disruption of the mitochondrial respiratory chain. We also demonstrated that DPI blocks mitochondrial oxidative phosphorylation (OxPhos) in a dose-dependent manner, and that AML cells with high OxPhos status are highly sensitive to treatment with DPI, which synergizes with the chemotherapeutic agent cytarabine (Ara-C). Thus, our results suggest that targeting mitochondrial function with DPI might be exploited to target AML cells with high OxPhos status.
    Keywords:  Ara-C; DPI; OxPhos; leukemia; mitochondria; oxidative stress
    DOI:  https://doi.org/10.3390/cancers14102485
  2. Methods Mol Biol. 2022 ;2399 123-149
      Mitochondrial respiratory chain (RC) transforms the reductive power of NADH or FADH2 oxidation into a proton gradient between the matrix and cytosolic sides of the inner mitochondrial membrane, that ATP synthase uses to generate ATP. This process constitutes a bridge between carbohydrates' central metabolism and ATP-consuming cellular functions. Moreover, the RC is responsible for a large part of reactive oxygen species (ROS) generation that play signaling and oxidizing roles in cells. Mathematical methods and computational analysis are required to understand and predict the possible behavior of this metabolic system. Here we propose a software tool that helps to analyze individual steps of respiratory electron transport in their dynamics, thus deepening understanding of the mechanism of energy transformation and ROS generation in the RC. This software's core is a kinetic model of the RC represented by a system of ordinary differential equations (ODEs). This model enables the analysis of complex dynamic behavior of the RC, including multistationarity and oscillations. The proposed RC modeling method can be applied to study respiration and ROS generation in various organisms and naturally extended to explore carbohydrates' metabolism and linked metabolic processes.
    Keywords:  Central energetic metabolism; Electron transport chain; Kinetic model; Ordinary differential equations; ROS generation; Reactive oxygen species; Respiratory chain; Respiratory complexes
    DOI:  https://doi.org/10.1007/978-1-0716-1831-8_6
  3. iScience. 2022 May 20. 25(5): 104340
      Chemical agents that specifically exploit metabolic vulnerabilities of cancer cells will be beneficial but are rare. The role of oxidative phosphorylation (OXPHOS) in promoting and maintaining triple-negative breast cancer (TNBC) growth provides new treatment opportunity. In this work, we describe AuPhos-19, a small-molecule gold(III)-based agent bearing a chiral phosphine ligand that selectively disrupts mitochondrial metabolism in murine and human TNBC cells but not normal epithelial cells. AuPhos-19 induces potent cytotoxic effect with half maximal inhibitory concentration (IC50) in the nanomolar range (220-650 nM) across different TNBC cell lines. The lipophilic cationic character of AuPhos-19 facilitates interaction with mitochondrial OXPHOS. AuPhos-19 inhibits mitochondria respiration and induces significant AMPK activation. Depolarization of the mitochondria membrane, mitochondria ROS accumulation, and mitochondria DNA depletion provided further indication that AuPhos-19 perturbs mitochondria function. AuPhos-19 inhibits tumor growth in tumor-bearing mice. This study highlights the development of gold-based compounds targeting mitochondrial pathways for efficacious cancer treatment.
    Keywords:  Biochemistry; Biological sciences; Cancer; Small molecule
    DOI:  https://doi.org/10.1016/j.isci.2022.104340
  4. Nature. 2022 May 25.
      Mitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles1 and have linked their dysfunction to more than 150 distinct disorders2,3. Still, hundreds of mitochondrial proteins lack clear functions4, and the underlying genetic basis for approximately 40% of mitochondrial disorders remains unresolved5. Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.
    DOI:  https://doi.org/10.1038/s41586-022-04765-3
  5. Cancers (Basel). 2022 May 21. pii: 2538. [Epub ahead of print]14(10):
      Combined treatment targeting mitochondria may improve the efficacy of lung cancer chemoprevention. Here, mitochondria-targeted honokiol (Mito-HNK), an inhibitor of mitochondrial complex I and STAT3 phosphorylation, and mitochondria-targeted lonidamine (Mito-LND), an inhibitor of mitochondrial complexes I/II and AKT/mTOR/p70S6K signaling, were evaluated for their combinational chemopreventive efficacy on mouse lung carcinogenesis. All chemopreventive treatments began one-week post-carcinogen treatment and continued daily for 24 weeks. No evidence of toxicity (including liver toxicity) was detected by monitoring serum levels of alanine aminotransferase and aspartate aminotransferase enzymes. Mito-HNK or Mito-LND treatment alone reduced tumor load by 56% and 48%, respectively, whereas the combination of Mito-HNK and Mito-LND reduced tumor load by 83%. To understand the potential mechanism(s) of action for the observed combinatorial effects, single-cell RNA sequencing was performed using mouse tumors treated with Mito-HNK, Mito-LND, and their combination. In lung tumor cells, Mito-HNK treatment blocked the expression of genes involved in mitochondrial complex ǀ, oxidative phosphorylation, glycolysis, and STAT3 signaling. Mito-LND inhibited the expression of genes for mitochondrial complexes I/II, oxidative phosphorylation, and AKT/mTOR/p70S6K signaling in lung tumor cells. In addition to these changes, a combination of Mito-HNK with Mito-LND decreased arginine and proline metabolism, N-glycan biosynthesis, and tryptophan metabolism in lung tumor cells. Our results demonstrate that Mito-LND enhanced the antitumor efficacy of Mito-HNK, where both compounds inhibited common targets (oxidative phosphorylation) as well as unique targets for each agent (STAT3 and mTOR signaling). Therefore, the combination of Mito-HNK with Mito-LND may present an effective strategy for lung cancer chemoprevention.
    Keywords:  lung cancer; mitochondria-targeted honokiol; mitochondria-targeted lonidamine; mitochondrial bioenergetics; single-cell RNA sequencing
    DOI:  https://doi.org/10.3390/cancers14102538
  6. Nucl Med Commun. 2022 May 30.
       OBJECTIVE: A better understanding of the metabolic phenotype of stem-like cancer cells could provide targets to help overcome chemoresistance. In this study, we hypothesized that colon cancer cells with the stem cell feature of CD133 expression have increased proton leakage that influences glucose metabolism and offers protection against reactive oxygen species (ROS)-inducing treatment.
    METHODS AND RESULTS: In HT29 colon cancer cells, 18F-fluorodeoxyglucose (FDG) uptake was increased by CD133 selection and decreased by CD133 silencing. In CD133(+) cells, greater 18F-FDG uptake was accompanied by increased oxygen consumption rate (OCR) and reduced mitochondrial membrane potential and mitochondrial ROS, indicating increased proton leakage. The uncoupling protein inhibitor genipin reversed the increased 18F-FDG uptake and greater OCR of CD133(+) cells. The ROS-inducing drug, piperlongumine, suppressed CD133(-) cell survival by stimulating mitochondrial ROS generation but was unable to influence CD133(+) cells when used alone. However, cotreatment of CD133(+) cells with genipin and piperlongumine efficiently stimulated mitochondrial ROS for an enhanced antitumor effect with substantially reduced CD133 expression.
    CONCLUSION: These results demonstrate that mitochondrial uncoupling is a metabolic feature of CD133(+) colon cancer cells that provides protection against piperlongumine therapy by suppressing mitochondrial ROS generation. Hence, combining genipin with ROS-inducing treatment may be an effective strategy to reverse the metabolic feature and eliminate stem-like colon cancer cells.
    DOI:  https://doi.org/10.1097/MNM.0000000000001587
  7. Cell Death Differ. 2022 May 25.
      Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Electrophysiological measurements indicate that TRAP1 directly inhibits a channel activity of purified F-ATP synthase endowed with the features of the permeability transition pore (PTP) and that it reverses PTP induction by CyPD, antagonizing PTP-dependent mitochondrial depolarization and cell death. Conversely, CyPD outcompetes the TRAP1 inhibitory effect on the channel. Our data identify TRAP1 as an F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.
    DOI:  https://doi.org/10.1038/s41418-022-01020-0
  8. Int J Mol Sci. 2022 May 16. pii: 5550. [Epub ahead of print]23(10):
      Maintaining a robust, stable source of energy for doing chemical and physical work is essential to all living organisms. In eukaryotes, metabolic energy (ATP) production and consumption occurs in two separate compartments, the mitochondrial matrix and the cytosol. As a result, understanding eukaryotic metabolism requires knowledge of energy metabolism in each compartment and how metabolism in the two compartments is coordinated. Central to energy metabolism is the adenylate energy state ([ATP]/[ADP][Pi]). ATP is synthesized by oxidative phosphorylation (mitochondrial matrix) and glycolysis (cytosol) and each compartment provides the energy to do physical work and to drive energetically unfavorable chemical syntheses. The energy state in the cytoplasmic compartment has been established by analysis of near equilibrium metabolic reactions localized in that compartment. In the present paper, analysis is presented for energy-dependent reactions localized in the mitochondrial matrix using data obtained from both isolated mitochondria and intact tissues. It is concluded that the energy state ([ATP]f/[ADP]f[Pi]) in the mitochondrial matrix, calculated from the free (unbound) concentrations, is not different from the energy state in the cytoplasm. Corollaries are: (1) ADP in both the cytosol and matrix is selectively bound and the free concentrations are much lower than the total measured concentrations; and (2) under physiological conditions, the adenylate energy states in the mitochondrial matrix and cytoplasm are not substantially different.
    Keywords:  cytoplasm; energy metabolism; metabolic integration; mitochondrial matrix
    DOI:  https://doi.org/10.3390/ijms23105550
  9. Mol Med Rep. 2022 Jul;pii: 238. [Epub ahead of print]26(1):
      The prognosis of glioblastoma, which is the most frequent type of adult‑onset malignant brain tumor, is extremely poor. Therefore, novel therapeutic strategies are needed. Previous studies report that JCI‑20679, which is synthesized based on the structure of naturally occurring acetogenin, inhibits mitochondrial complex I and suppresses the growth of various types of cancer cells. However, the efficacy of JCI‑20679 on glioblastoma stem cells (GSCs) is unknown. The present study demonstrated that JCI‑20679 inhibited the growth of GSCs derived from a transposon system‑mediated murine glioblastoma model more efficiently compared with the growth of differentiation‑induced adherent cells, as determined by a trypan blue staining dye exclusion test. The inhibition of proliferation was accompanied by the blockade of cell‑cycle entry into the S‑phase, as assessed by a BrdU incorporation assay. JCI‑20679 decreased the mitochondrial membrane potential, suppressed the oxygen consumption rate and increased mitochondrial reactive oxygen species generation, indicating that JCI‑20679 inhibited mitochondrial activity. The mitochondrial inhibition was revealed to increase phosphorylated (phospho)‑AMPKα levels and decrease nuclear factor of activated T‑cells 2 (NFATc2) expression, and was accompanied by a decrease in calcineurin phosphatase activity. Depletion of phospho‑AMPKα by knockdown of AMPKβ recovered the JCI‑20679‑mediated decrease in NFATc2 expression levels, as determined by western blotting and reverse transcription‑quantitative PCR analysis. Overexpression of NFATc2 recovered the JCI‑20679‑mediated suppression of proliferation, as determined by a trypan blue staining dye exclusion test. These results suggest that JCI‑20679 inhibited mitochondrial oxidative phosphorylation, which activated AMPK and reduced NFATc2 expression levels. Moreover, systemic administration of JCI‑20679 extended the event‑free survival rate in a mouse model transplanted with GSCs. Overall, these results suggested that JCI‑20679 is a potential novel therapeutic agent against glioblastoma.
    Keywords:  AMPK; JCI‑20679; glioblastoma; glioblastoma stem‑cell; mitochondria; nuclear factor of activated T‑cells 2
    DOI:  https://doi.org/10.3892/mmr.2022.12754
  10. Front Oncol. 2022 ;12 893396
      Mitochondrial metabolism and dynamics (fission and fusion) critically regulate cell survival and proliferation, and abnormalities in these pathways are implicated in both neurodegenerative disorders and cancer. Mitochondrial fission is necessary for the growth of mutant Ras-dependent tumors. Here, we investigated whether loss of PTEN-induced kinase 1 (PINK1) - a mitochondrial kinase linked to recessive familial Parkinsonism - affects the growth of oncogenic Ras-induced tumor growth in vitro and in vivo. We show that RasG12D-transformed embryonic fibroblasts (MEFs) from PINK1-deficient mice display reduced growth in soft agar and in nude mice, as well as increased necrosis and decreased cell cycle progression, compared to RasG12D-transformed MEFs derived from wildtype mice. PINK1 re-expression (overexpression) at least partially rescues these phenotypes. Neither PINK1 deletion nor PINK1 overexpression altered Ras expression levels. Intriguingly, PINK1-deficient Ras-transformed MEFs exhibited elongated mitochondria and altered DRP1 phosphorylation, a key event in regulating mitochondrial fission. Inhibition of DRP1 diminished PINK1-regulated mitochondria morphological changes and tumor growth suggesting that PINK1 deficiency primarily inhibits Ras-driven tumor growth through disturbances in mitochondrial fission and associated cell necrosis and cell cycle defects. Moreover, we substantiate the requirement of PINK1 for optimal growth of Ras-transformed cells by showing that human HCT116 colon carcinoma cells (carrying an endogenous RasG13D mutation) with CRISPR/Cas9-introduced PINK1 gene deletions also show reduced mitochondrial fission and decreased growth. Our results support the importance of mitochondrial function and dynamics in regulating the growth of Ras-dependent tumor cells and provide insight into possible mechanisms underlying the lower incidence of cancers in Parkinson's disease and other neurodegenerative disorders.
    Keywords:  PTEN-induced kinase-1 (PINK1); Ras protein; Ras-induced tumors; cell cycle; dynamin-related protein 1 (DRP1); mitochondrial dynamics; mitochondrial metabolism
    DOI:  https://doi.org/10.3389/fonc.2022.893396
  11. Heliyon. 2022 May;8(5): e09353
      Mitochondrial respiratory chain (RC) function requires the stoichiometric interaction among dozens of proteins but their co-regulation has not been defined in the human brain. Here, using quantitative proteomics across three independent cohorts we systematically characterized the co-regulation patterns of mitochondrial RC proteins in the human dorsolateral prefrontal cortex (DLPFC). Whereas the abundance of RC protein subunits that physically assemble into stable complexes were correlated, indicating their co-regulation, RC assembly factors exhibited modest co-regulation. Within complex I, nuclear DNA-encoded subunits exhibited >2.5-times higher co-regulation than mitochondrial (mt)DNA-encoded subunits. Moreover, mtDNA copy number was unrelated to mtDNA-encoded subunits abundance, suggesting that mtDNA content is not limiting. Alzheimer's disease (AD) brains exhibited reduced abundance of complex I RC subunits, an effect largely driven by a 2-4% overall lower mitochondrial protein content. These findings provide foundational knowledge to identify molecular mechanisms contributing to age- and disease-related erosion of mitochondrial function in the human brain.
    Keywords:  Alzheimer disease; BLSA; Banner; Mitochondrial respiratory chain; Post-mortem brain; Proteomics; ROSMAP
    DOI:  https://doi.org/10.1016/j.heliyon.2022.e09353
  12. J Exp Med. 2022 Jul 04. pii: e20211894. [Epub ahead of print]219(7):
      Given the clinical, economic, and societal impact of obesity, unraveling the mechanisms of adipose tissue expansion remains of fundamental significance. We previously showed that white adipose tissue (WAT) levels of 3-mercaptopyruvate sulfurtransferase (MPST), a mitochondrial cysteine-catabolizing enzyme that yields pyruvate and sulfide species, are downregulated in obesity. Here, we report that Mpst deletion results in fat accumulation in mice fed a high-fat diet (HFD) through transcriptional and metabolic maladaptation. Mpst-deficient mice on HFD exhibit increased body weight and inguinal WAT mass, reduced metabolic rate, and impaired glucose/insulin tolerance. At the molecular level, Mpst ablation activates HIF1α, downregulates subunits of the translocase of outer/inner membrane (TIM/TOM) complex, and impairs mitochondrial protein import. MPST deficiency suppresses the TCA cycle, oxidative phosphorylation, and fatty acid oxidation, enhancing lipid accumulation. Sulfide donor administration to obese mice reverses the HFD-induced changes. These findings reveal the significance of MPST for white adipose tissue biology and metabolic health and identify a potential new therapeutic target for obesity.
    DOI:  https://doi.org/10.1084/jem.20211894
  13. Biomol Concepts. 2022 May 26. 13(1): 272-288
      Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I-IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this - and other views - has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II-III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell's single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath's two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I-V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer's and other neurodegenerative diseases that involve mitochondrial dysfunction.
    Keywords:  2,4-dinitrophenol; Alzheimer’s disease; Complexes I–V; Gunnar Hollunger’s pioneering work in pharmacology; Mitchell’s single-ion chemiosmotic theory; Nath’s torsional mechanism of energy transduction and ATP synthesis; Nath’s two-ion theory of energy coupling; OXPHOS supercomplexes; Paolo Bernardi’s pioneering work on cell death and ATP; alkylguanidines; carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; competitive inhibition of succinate with the anionic uncouplers of OXPHOS; coupling of proton and succinate anion transport; dicoumarol; differential release of inhibition by pharmacological agents by uncouplers; functional role of the OXPHOS supercomplexes; inhibition of succinate entry by uncouplers; integrated mitochondrial function; interaction of site-specific guanidine derivatives with mitochondria; mitochondrial dysfunction; new definition of mitochondrial respiration; new model of energy transfer in mitochondria; octylguanidines; oxidative phosphorylation; phenethylbiguanides; sensing of local electrical potential, Δψ; supramolecular biology; supramolecular chemistry; translocation of succinate monoanions and succinate dianions across cristae membranes; two distinct energy conservation pathways between the electron transport chain and FOF1-ATP synthase; type 2 diabetes
    DOI:  https://doi.org/10.1515/bmc-2022-0021
  14. Sci Rep. 2022 May 24. 12(1): 8771
      Colorectal cancer (CRC) cells shift metabolism toward aerobic glycolysis and away from using oxidative substrates such as butyrate. Pyruvate kinase M1/2 (PKM) is an enzyme that catalyzes the last step in glycolysis, which converts phosphoenolpyruvate to pyruvate. M1 and M2 are alternatively spliced isoforms of the Pkm gene. The PKM1 isoform promotes oxidative metabolism, whereas PKM2 enhances aerobic glycolysis. We hypothesize that the PKM isoforms are involved in the shift away from butyrate oxidation towards glycolysis in CRC cells. Here, we find that PKM2 is increased and PKM1 is decreased in human colorectal carcinomas as compared to non-cancerous tissue. To test whether PKM1/2 alter colonocyte metabolism, we created a knockdown of PKM2 and PKM1 in CRC cells to analyze how butyrate oxidation and glycolysis would be impacted. We report that butyrate oxidation in CRC cells is regulated by PKM1 levels, not PKM2. Decreased butyrate oxidation observed through knockdown of PKM1 and PKM2 is rescued through re-addition of PKM1. Diminished PKM1 lowered mitochondrial basal respiration and decreased mitochondrial spare capacity. We demonstrate that PKM1 suppresses glycolysis and inhibits hypoxia-inducible factor-1 alpha. These data suggest that reduced PKM1 is, in part, responsible for increased glycolysis and diminished butyrate oxidation in CRC cells.
    DOI:  https://doi.org/10.1038/s41598-022-12827-9
  15. Curr Protein Pept Sci. 2022 May 20.
      Mitochondria are important intracellular organelles because of their key roles in cellular metabolism, proliferation, and programmed cell death. The differences in the structure and function of the mitochondria of healthy and cancerous cells have made mitochondria an interesting target for drug delivery. Mitochondrial targeting is an emerging field as the targeted delivery of cytotoxic payloads and antioxidants to the mitochondrial DNA is capable of overcoming multidrug resistance. This feature has attracted the focus of much research in the field of mitochondrial targeting that is preferred over nuclear targeting. The negative membrane potential of the inner and outer mitochondrial membranes, as well as their lipophilicity are known to be the features that drive the entry of compatible targeting moiety along with anticancer drug conjugates towards mitochondria. The design of such drug nanocarrier conjugates is challenging because they need not only target the specific tumor/cancer site but have to overcome multiple barriers as well, such as the cell membrane and mitochondrial membrane. This review focuses on the use of peptide-based nanocarriers (organic nanostructures such as liposomes, inorganic, carbon-based, and polymers) for mitochondrial targeting at the tumor/cancer. Both in vitro and in vivo key results are reported.
    Keywords:  cancer therapy; cell penetrating peptide; metabolism and cancer; metabolism and cancerpeptide; mitochondrial targeting sequence; peptide; theranostics
    DOI:  https://doi.org/10.2174/1389203723666220520160435
  16. Metabolites. 2022 Apr 19. pii: 369. [Epub ahead of print]12(5):
      Aggressive breast cancer has been shown to shift its metabolism towards increased lipid catabolism as the primary carbon source for oxidative phosphorylation. In this study, we present a technique to longitudinally monitor lipid metabolism and oxidative phosphorylation in pre-clinical tumor models to investigate the metabolic changes with mammary tissue development and characterize metabolic differences between primary murine breast cancer and normal mammary tissue. We used optical spectroscopy to measure the signal of two simultaneously injected exogenous fluorescent metabolic reporters: TMRE (oxidative phosphorylation surrogate) and Bodipy FL C16 (lipid catabolism surrogate). We leverage an inverse Monte Carlo algorithm to correct for aberrations resulting from tissue optical properties and to extract vascular endpoints relevant to oxidative metabolism, specifically oxygen saturation (SO2) and hemoglobin concentration ([Hb]). We extensively validated our optical method to demonstrate that our two fluorescent metabolic endpoints can be measured without chemical or optical crosstalk and that dual measurements of both fluorophores in vivo faithfully recapitulate the measurements of each fluorophore independently. We then applied our method to track the metabolism of growing 4T1 and 67NR breast tumors and aging mammary tissue, all highly metabolic tissue types. Our results show the changes in metabolism as a function of mammary age and tumor growth, and these changes can be best distinguished through the combination of endpoints measured with our system. Clustering analysis incorporating both Bodipy FL C16 and TMRE endpoints combined with either SO2 or [Hb] proved to be the most effective in minimizing intra-group variance and maximizing inter-group differences. Our platform can be extended to applications in which long-term metabolic flexibility is important to study, for example in tumor regression, recurrence following dormancy, and responses to cancer treatment.
    Keywords:  fatty acid uptake; mitochondrial metabolism; murine tumor lines; optical spectroscopy; tumor metabolism; tumor vascular environment
    DOI:  https://doi.org/10.3390/metabo12050369
  17. J Cell Biochem. 2022 May 26.
      Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.
    Keywords:  MICOS; Podospora anserina; aging; cristae; mitochondria; mitohormesis
    DOI:  https://doi.org/10.1002/jcb.30278
  18. Br J Cancer. 2022 May 26.
       BACKGROUND: We evaluated the therapeutic potential of combining the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 with the mitochondrial respiratory Complex I inhibitor IACS-010759, for the treatment of diffuse large B-cell lymphoma (DLBCL), a potential clinically actionable strategy to target tumour metabolism.
    METHODS: AZD3965 and IACS-010759 sensitivity were determined in DLBCL cell lines and tumour xenograft models. Lactate concentrations, oxygen consumption rate and metabolomics were examined as mechanistic endpoints. In vivo plasma concentrations of IACS-010759 in mice were determined by LC-MS to select a dose that reflected clinically attainable concentrations.
    RESULTS: In vitro, the combination of AZD3965 and IACS-010759 is synergistic and induces DLBCL cell death, whereas monotherapy treatments induce a cytostatic response. Significant anti-tumour activity was evident in Toledo and Farage models when the two inhibitors were administered concurrently despite limited or no effect on the growth of DLBCL xenografts as monotherapies.
    CONCLUSIONS: This is the first study to examine a combination of two distinct approaches to targeting tumour metabolism in DLBCL xenografts. Whilst nanomolar concentrations of either AZD3965 or IACS-010759 monotherapy demonstrate anti-proliferative activity against DLBCL cell lines in vitro, appreciable clinical activity in DLBCL patients may only be realised through their combined use.
    DOI:  https://doi.org/10.1038/s41416-022-01848-w
  19. Cancers (Basel). 2022 May 23. pii: 2565. [Epub ahead of print]14(10):
      In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias' (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production. Primary blasts from seventeen AML patients, assayed for annexin V and live/dead exclusion by flow cytometry, showed an increase in the apoptotic effect using the drug combination, as compared with ascorbate alone. We show that ascorbate inhibits glycolysis through interfering with HK1/2 and GLUT1 functions in hematopoietic cells. Ascorbate combined with buformin decreases mitochondrial respiration and ATP production and downregulates glycolysis, enhancing the apoptotic effect of ascorbate in primary blasts from AMLs and sparing normal CD34+ bone marrow progenitors. In conclusion, our data have therapeutic implications especially in fragile patients since both agents have an excellent safety profile, and the data also support the clinical evaluation of ascorbate-buformin in association with different mechanism drugs for the treatment of refractory/relapsing AML patients with no other therapeutic options.
    Keywords:  Acute Myeloid Leukemia; GLUT1; OXPHOS; Seahorse XF; ascorbate; buformin; glycolysis; hexokinase 1/2; metabolism; pharmacologic activity
    DOI:  https://doi.org/10.3390/cancers14102565
  20. Am J Physiol Cell Physiol. 2022 May 25.
      Reactive oxygen species (ROS) are recognised both as damaging molecules and intracellular signalling entities. In addition to its role in ATP generation, the mitochondrial electron transport chain (ETC) constitutes a relevant source of mitochondrial ROS, in particular during pathological conditions. Mitochondrial ROS homeostasis depends on species- and site-dependent ROS production, their bioreactivity, diffusion, and scavenging. However, our quantitative understanding of mitochondrial ROS homeostasis has thus far been hampered by technical limitations, including lack of truly site- and/or ROS-specific reporter molecules. In this context, the use of computational models is of great value to complement and interpret empirical data, as well as to predict variables that are difficult to assess experimentally. During the last decades, various mechanistic models of ETC-mediated ROS production have been developed. Although these often-complex models have generated novel insights, their parameterisation, analysis, and integration with other computational models is not straightforward. In contrast, phenomenological (sometimes termed "minimal") models use a relatively small set of equations to describe empirical relationship(s) between ROS-related and other parameters, and generally aim to explore system behaviour and generate hypotheses for experimental validation. In this review, we first discuss ETC-linked ROS homeostasis and introduce various detailed mechanistic models. Next, we present how bioenergetic parameters (e.g. NADH/NAD+ ratio, mitochondrial membrane potential) relate to site-specific ROS production within the ETC and how these relationships can be used to design minimal models of ROS homeostasis. Finally, we illustrate how minimal models have been applied to explore pathophysiological aspects of ROS.
    Keywords:  Electron transport chain; Mathematical model; Mitochondria; Reactive oxygen species
    DOI:  https://doi.org/10.1152/ajpcell.00455.2021
  21. Front Physiol. 2022 ;13 868820
      The ATP synthase is an essential multifunctional enzyme complex of mitochondria that produces most of cellular ATP, shapes the structure of the inner membrane into cristae and regulates the signals that control cell fate or demise. The ATPase Inhibitory Factor 1 (IF1) functions in vivo as a physiological regulator of the ATP synthase and thereby controls mitochondrial structure and function, and the retrograde signaling pathways that reprogram nuclear gene expression. However, IF1 is not ubiquitously expressed in mammals, showing tissue-restricted expression in humans and mice and large expression differences between the two species in some tissues. Herein, we summarized key regulatory functions of IF1 for tissue homeostasis, with special emphasis on the deleterious effects that its genetic ablation in neurons has in learning. The development and characterization of tissue-specific mouse models with regulated expression of IF1 will be crucial to disentangle the contribution of the ATP synthase/IF1 axis in pathophysiology.
    Keywords:  ATP synthase; ATPase inhibitory factor 1; Mitohormesis; cellular signaling; learning; neurons; oxidative phosphorylation; reactive oxygen species
    DOI:  https://doi.org/10.3389/fphys.2022.868820
  22. Biochimie. 2022 May 23. pii: S0300-9084(22)00133-X. [Epub ahead of print]
      The unregulated uptake of modified low-density lipoproteins (LDL) by macrophages leads to foam cell formation, promoting atherosclerotic plaque progression. The cholesterol efflux capacity of macrophages by the ATP-Binding Cassette transporters depends on the ATP mitochondrial production. Therefore, the mitochondrial function maintenance is crucial in limiting foam cell formation. Thus, we aimed to investigate the mechanisms involved in the mitochondrial dysfunction that may occur in cholesterol-laden macrophages. We incubated THP-1 macrophages with acetylated LDL (acLDL) to obtain cholesterol-laden cells or with mildly oxidized LDL (oxLDL) to generate cholesterol- and oxidized lipids-laden cells. Cellular cholesterol content was measured in each condition. Mitochondrial function was evaluated by measurement of several markers of energetic metabolism, oxidative phosphorylation, oxidative stress, mitochondrial biogenesis and dynamics. OxLDL-exposed macrophages exhibited a significantly reduced mitochondrial respiration and complexes I and III activities, associated to an oxidative stress state and a reduced mitochondrial DNA copy number. Meanwhile, acLDL-exposed macrophages featured an efficient oxidative phosphorylation despite the decreased activities of aconitase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. Our study revealed that mitochondrial function was differently impacted according to the nature of modified LDL. Exposure to cholesterol and oxidized lipids carried by oxLDL leads to a mitochondrial dysfunction in macrophages, affecting the mitochondrial respiratory chain functional capacity, whereas the cellular cholesterol enrichment induced by acLDL exposure results in a tricarboxylic acid cycle shunt while maintaining mitochondrial energetic production, reflecting a metabolic adaptation to cholesterol intake. These new mechanistic insights are of direct relevance to the understanding of the mitochondrial dysfunction in foam cells.
    Keywords:  Atherosclerosis; Cholesterol; Foam cells; Low-density lipoprotein; Macrophage; Mitochondrion; Oxidative stress; Respiratory chain
    DOI:  https://doi.org/10.1016/j.biochi.2022.05.011
  23. Nat Rev Cancer. 2022 May 25.
      Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
    DOI:  https://doi.org/10.1038/s41568-022-00485-y
  24. Trends Endocrinol Metab. 2022 May 18. pii: S1043-2760(22)00087-X. [Epub ahead of print]
      Lionaki et al. report that reducing mitochondrial protein import increases Caenorhabditis elegans lifespan, through a metabolic shift that enhances the conversion of glucose into serine. Here, I discuss the promise held by these findings in the framework of therapeutic approaches to metabolic and neurodegenerative diseases.
    Keywords:  C. elegans; fructose; glucose; lifespan; metabolic shift; mitochondrial protein import
    DOI:  https://doi.org/10.1016/j.tem.2022.05.001
  25. Trends Genet. 2022 May 19. pii: S0168-9525(22)00107-X. [Epub ahead of print]
      The mitochondrial genome has been difficult to manipulate because it is shielded by the organelle double membranes, preventing efficient nucleic acid entry. Moreover, mitochondrial DNA (mtDNA) recombination is not a robust system in most species. This limitation has forced investigators to rely on naturally occurring alterations to study both mitochondrial function and pathobiology. Because most pathogenic mtDNA mutations are heteroplasmic, the development of specific nucleases has allowed us to selectively eliminate mutant species. Several 'protein only' gene-editing platforms have been successfully used for this purpose. More recently, a DNA double-strand cytidine deaminase has been identified and adapted to edit mtDNA. This enzyme was also used as a component to adapt a DNA single-strand deoxyadenosine deaminase to mtDNA editing. These are major advances in our ability to precisely alter the mtDNA in animal cells.
    Keywords:  TALEN; gene editing; genetic engineering; mitochondria
    DOI:  https://doi.org/10.1016/j.tig.2022.04.011
  26. MicroPubl Biol. 2022 ;2022
      The mitochondrial unfolded protein response (UPR mt ) is an important stress response that ensures the maintenance of mitochondrial homeostasis in response to various types of cellular stress. We previously described a genetic screen for Caenorhabditis elegans genes, which when inactivated cause UPR mt activation, and reported genes identified that encode mitochondrial proteins. We now report additional genes identified in the screen. Importantly, these include genes that encode non-mitochondrial proteins involved in processes such as the control of gene expression, post-translational modifications, cell signaling and cellular trafficking. Interestingly, we identified several genes that have been proposed to participate in the transfer of lipids between peroxisomes, ER and mitochondria, suggesting that lipid transfer between these organelles is essential for mitochondrial homeostasis. In conclusion, this study shows that the maintenance of mitochondrial homeostasis is not only dependent on mitochondrial processes but also relies on non-mitochondrial processes and pathways. Our results reinforce the notion that mitochondrial function and cellular function are intimately connected.
    DOI:  https://doi.org/10.17912/micropub.biology.000562
  27. iScience. 2022 May 20. 25(5): 104349
      Glycyrrhetinic acid (GA) is a natural product of licorice with mitochondria targeting properties and shows broad anticancer activities, but its targets and underlying mechanisms remain elusive. Here, we identified the mitochondrial enzyme serine hydroxymethyltransferase 2 (SHMT2) as a target of GA by using chemical proteomics. Binding to and inhibiting the activity of SHMT2 by GA were validated in vitro and in vivo. Knockout of SHMT2 or inhibiting SHMT2 with GA restricts mitochondrial energy supplies by downregulating mitochondrial oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation, and consequently suppresses cancer cell proliferation and tumor growth. Crystal structures of GA derivatives indicate that GA occupies SHMT2 folate-binding pocket and regulates SHMT2 activity. Modifications at GA carboxylic group with diamines significantly improved its anticancer potency, demonstrating GA as a decent structural template for SHMT2 inhibitor development.
    Keywords:  Biochemistry; Natural product biochemistry; Omics; Proteomics
    DOI:  https://doi.org/10.1016/j.isci.2022.104349
  28. Nutr Metab (Lond). 2022 May 21. 19(1): 37
       BACKGROUND: Adiposity and mitochondrial dysfunction are related factors contributing to metabolic disease development. This pilot study examined whether in vivo and ex vivo indices of mitochondrial metabolism were differentially associated with body composition in males and females.
    METHODS: Thirty-four participants including 19 females (mean 27 yr) and 15 males (mean 29 yr) had body composition assessed by dual energy x-ray absorptiometry and magnetic resonance (MR) imaging. Monocyte reserve capacity and maximal oxygen consumption rate (OCR) were determined ex vivo using extracellular flux analysis. In vivo quadriceps mitochondrial function was measured using 31P-MR spectroscopy based on post-exercise recovery kinetics (τPCr). The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin levels. Variables were log-transformed, and Pearson correlations and partial correlations were used for analyses.
    RESULTS: Mitochondrial metabolism was similar between sexes (p > 0.05). In males only, higher fat mass percent (FM%) was correlated with lower reserve capacity (r = - 0.73; p = 0.002) and reduced muscle mitochondrial function (r = 0.58, p = 0.02). Thigh subcutaneous adipose tissue was inversely related to reserve capacity in males (r = - 0.75, p = 0.001), but in females was correlated to higher maximal OCR (r = 0.48, p = 0.046), independent of FM. In females, lean mass was related to greater reserve capacity (r = 0.47, p = 0.04). In all participants, insulin (r = 0.35; p = 0.04) and HOMA-IR (r = 0.34; p = 0.05) were associated with a higher τPCr.
    CONCLUSIONS: These novel findings demonstrate distinct sex-dependent associations between monocyte and skeletal muscle mitochondrial metabolism with body composition. With further study, increased understanding of these relationships may inform sex-specific interventions to improve mitochondrial function and metabolic health.
    Keywords:  Adiposity; Body composition; Fat distribution; Intermuscular fat; MRS; Mitochondria; Muscle
    DOI:  https://doi.org/10.1186/s12986-022-00670-8
  29. Redox Biol. 2022 May 17. pii: S2213-2317(22)00114-8. [Epub ahead of print]53 102342
      Type 2 diabetes is a chronic metabolic disease that affects mitochondrial function. In this context, the rescue mechanisms of mitochondrial health, such as mitophagy and mitochondrial biogenesis, are of crucial importance. The gold standard for the treatment of type 2 diabetes is metformin, which has a beneficial impact on the mitochondrial metabolism. In this study, we set out to describe the effect of metformin treatment on mitochondrial function and mitophagy in peripheral blood mononuclear cells (PBMCs) from type 2 diabetic patients. We performed a preliminary cross-sectional observational study complying with CONSORT requirements, for which we recruited 242 subjects, divided into 101 healthy volunteers, 93 metformin-treated type 2 diabetic patients and 48 non-metformin-treated type 2 diabetic patients. Mitochondria from the type 2 diabetic patients not treated with metformin displayed more reactive oxygen species (ROS) than those from healthy or metformin-treated subjects. Protein expression of the electron transport chain (ETC) complexes was lower in PBMCs from type 2 diabetic patients without metformin treatment than in those from the other two groups. Mitophagy was altered in type 2 diabetic patients, evident in a decrease in the protein levels of PINK1 and Parkin in parallel to that of the mitochondrial biogenesis protein PGC1α, both of which effects were reversed by metformin. Analysis of AMPK phosphorylation revealed that its activation was decreased in the PBMCs of type 2 diabetic patients, an effect which was reversed, once again, by metformin. In addition, there was an increase in the serum levels of TNFα and IL-6 in type 2 diabetic patients and this was reversed with metformin treatment. These results demonstrate that metformin improves mitochondrial function, restores the levels of ETC complexes, and enhances AMPK activation and mitophagy, suggesting beneficial clinical implications in the treatment of type 2 diabetes.
    Keywords:  Metformin; Mitochondria; Mitophagy; Type 2 diabetes
    DOI:  https://doi.org/10.1016/j.redox.2022.102342
  30. Free Radic Biol Med. 2022 May 21. pii: S0891-5849(22)00194-0. [Epub ahead of print]
      MitoNEET is the first iron-sulfur protein found in mitochondrial outer membrane. Abnormal expression of mitoNEET in cells has been linked to several types of cancer, type II diabetes, and neurodegenerative diseases. Structurally, mitoNEET is anchored to mitochondrial outer membrane via its N-terminal single transmembrane alpha helix. The C-terminal cytosolic domain of mitoNEET binds a [2Fe-2S] cluster via three cysteine and one histidine residues. It has been shown that mitoNEET has a crucial role in energy metabolism, iron homeostasis, and free radical production in cells. However, the exact function of mitoNEET remains elusive. Previously, we reported that the C-terminal soluble domain of mitoNEET has a specific binding site for flavin mononucleotide (FMN) and can transfer electrons from FMNH2 to oxygen or ubiquinone-2 via its [2Fe-2S] cluster. Here we have constructed a hybrid protein using the N-terminal transmembrane domain of Escherichia coli YneM and the C-terminal soluble domain of human mitoNEET and assembled the hybrid protein YneM-mitoNEET into phospholipid nanodiscs. The results show that the [2Fe-S] clusters in the nanodisc-bound YneM-mitoNEET can be rapidly reduced by FMNH2 which is reduced by flavin reductase using NADH as the electron donor. Addition of lumichrome, a FMN analog, effectively inhibits the FMNH2-mediated reduction of the [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET. The reduced [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET are quickly oxidized by oxygen under aerobic conditions or by ubiquinone-10 in the nanodiscs under anaerobic conditions. Because NADH oxidation is required for cellular glycolytic activity, we propose that the mitochondrial outer membrane protein mitoNEET may promote glycolysis by transferring electrons from FMNH2 to oxygen or ubiquinone-10 in mitochondria.
    Keywords:  Electron transfer activity; FMN; Mitochondria; NADH; Nanodisc; mitoNEET
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2022.05.011
  31. J Cell Biol. 2022 Jul 04. pii: e202201071. [Epub ahead of print]221(7):
      The mitochondrial unfolded protein response (UPRmt) is dedicated to promoting mitochondrial proteostasis and is linked to extreme longevity. The key regulator of this process is the transcription factor ATFS-1, which, upon UPRmt activation, is excluded from the mitochondria and enters the nucleus to regulate UPRmt genes. However, the repair proteins synthesized as a direct result of UPRmt activation must be transported into damaged mitochondria that had previously excluded ATFS-1 owing to reduced import efficiency. To address this conundrum, we analyzed the role of the import machinery when the UPRmt was induced. Using in vitro and in vivo analysis of mitochondrial proteins, we surprisingly find that mitochondrial import increases when the UPRmt is activated in an ATFS-1-dependent manner, despite reduced mitochondrial membrane potential. The import machinery is upregulated, and an intact import machinery is essential for UPRmt-mediated lifespan extension. ATFS-1 has a weak mitochondrial targeting sequence (MTS), allowing for dynamic subcellular localization during the initial stages of UPRmt activation.
    DOI:  https://doi.org/10.1083/jcb.202201071
  32. Metabolites. 2022 May 23. pii: 469. [Epub ahead of print]12(5):
      Several cancers, including breast cancers, show dependence on glutamine metabolism. The purpose of the present study was to determine the mechanistic basis and impact of differential glutamine metabolism in nonmetastatic and metastatic murine mammary cancer cells. Universally labeled 13C5-glutamine metabolic tracing, qRT-PCR, measures of reductive-oxidative balance, and exogenous ammonium chloride treatment were used to assess glutamine reprogramming. Results show that 4 mM media concentration of glutamine, compared with 2 mM, reduced viability only in metastatic cells, and that this decrease in viability was accompanied by increased incorporation of glutamine-derived carbon into the tricarboxylic acid (TCA) cycle. While increased glutamine metabolism in metastatic cells occurred in tandem with a decrease in the reduced/oxidized glutathione ratio, treatment with the antioxidant molecule N-acetylcysteine did not rescue cell viability. However, the viability of metastatic cells was more sensitive to ammonium chloride treatment compared with nonmetastatic cells, suggesting a role of metabolic reprogramming in averting nitrogen cytotoxicity in nonmetastatic cells. Overall, these results demonstrate the ability of nonmetastatic cancer cells to reprogram glutamine metabolism and that this ability may be lost in metastatic cells.
    Keywords:  ammonium toxicity; breast cancer; glutamine metabolism; metabolic reprogramming; metastasis
    DOI:  https://doi.org/10.3390/metabo12050469
  33. Nat Metab. 2022 May 26.
      Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-β (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.
    DOI:  https://doi.org/10.1038/s42255-022-00576-y
  34. Dev Cell. 2022 May 15. pii: S1534-5807(22)00306-9. [Epub ahead of print]
      The changes that drive differentiation facilitate the emergence of abnormal cells that need to be removed before they contribute to further development or the germline. Consequently, in mice in the lead-up to gastrulation, ∼35% of embryonic cells are eliminated. This elimination is caused by hypersensitivity to apoptosis, but how it is regulated is poorly understood. Here, we show that upon exit of naive pluripotency, mouse embryonic stem cells lower their mitochondrial apoptotic threshold, and this increases their sensitivity to cell death. We demonstrate that this enhanced apoptotic response is induced by a decrease in mitochondrial fission due to a reduction in the activity of dynamin-related protein 1 (DRP1). Furthermore, we show that in naive pluripotent cells, DRP1 prevents apoptosis by promoting mitophagy. In contrast, during differentiation, reduced mitophagy levels facilitate apoptosis. Together, these results indicate that during early mammalian development, DRP1 regulation of mitophagy determines the apoptotic response.
    Keywords:  apoptosis; early development; embryonic stem cell differentiation; mitochondrial dynamics; mitophagy; pluripotency
    DOI:  https://doi.org/10.1016/j.devcel.2022.04.020
  35. Adv Sci (Weinh). 2022 May 23. e2105126
      Metabolic reprogramming is often observed in carcinogenesis, but little is known about the aberrant metabolic genes involved in the tumorigenicity and maintenance of stemness in cancer cells. Sixty-seven oncogenic metabolism-related genes in liver cancer by in vivo CRISPR/Cas9 screening are identified. Among them, acetyl-CoA carboxylase 1 (ACC1), aldolase fructose-bisphosphate A (ALDOA), fatty acid binding protein 5 (FABP5), and hexokinase 2 (HK2) are strongly associated with stem cell properties. HK2 further facilitates the maintenance and self-renewal of liver cancer stem cells. Moreover, HK2 enhances the accumulation of acetyl-CoA and epigenetically activates the transcription of acyl-CoA synthetase long-chain family member 4 (ACSL4), leading to an increase in fatty acid β-oxidation activity. Blocking HK2 or ACSL4 effectively inhibits liver cancer growth, and GalNac-siHK2 administration specifically targets the growth of orthotopic tumor xenografts. These results suggest a promising therapeutic strategy for the treatment of liver cancer.
    Keywords:  ACSL4; cancer cell stemness; fatty acid β-oxidation; hexokinase 2
    DOI:  https://doi.org/10.1002/advs.202105126
  36. Nature. 2022 May 25.
      Mitochondria generate heat due to H+ leak (IH) across their inner membrane1. IH results from the action of long-chain fatty acids on uncoupling protein 1 (UCP1) in brown fat2-6 and ADP/ATP carrier (AAC) in other tissues1,7-9, but the underlying mechanism is poorly understood. As evidence of pharmacological activators of IH through UCP1 and AAC is lacking, IH is induced by protonophores such as 2,4-dinitrophenol (DNP) and cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)10,11. Although protonophores show potential in combating obesity, diabetes and fatty liver in animal models12-14, their clinical potential for treating human disease is limited due to indiscriminately increasing H+ conductance across all biological membranes10,11 and adverse side effects15. Here we report the direct measurement of IH induced by DNP, FCCP and other common protonophores and find that it is dependent on AAC and UCP1. Using molecular structures of AAC, we perform a computational analysis to determine the binding sites for protonophores and long-chain fatty acids, and find that they overlap with the putative ADP/ATP-binding site. We also develop a mathematical model that proposes a mechanism of uncoupler-dependent IH through AAC. Thus, common protonophoric uncouplers are synthetic activators of IH through AAC and UCP1, paving the way for the development of new and more specific activators of these two central mediators of mitochondrial bioenergetics.
    DOI:  https://doi.org/10.1038/s41586-022-04747-5
  37. Nat Commun. 2022 May 23. 13(1): 2866
      Current therapy against colorectal cancer (CRC) is based on DNA-damaging agents that remain ineffective in a proportion of patients. Whether and how non-curative DNA damage-based treatment affects tumor cell behavior and patient outcome is primarily unstudied. Using CRC patient-derived organoids (PDO)s, we show that sublethal doses of chemotherapy (CT) does not select previously resistant tumor populations but induces a quiescent state specifically to TP53 wildtype (WT) cancer cells, which is linked to the acquisition of a YAP1-dependent fetal phenotype. Cells displaying this phenotype exhibit high tumor-initiating and metastatic activity. Nuclear YAP1 and fetal traits are present in a proportion of tumors at diagnosis and predict poor prognosis in patients carrying TP53 WT CRC tumors. We provide data indicating the higher efficacy of CT together with YAP1 inhibitors for eradication of therapy resistant TP53 WT cancer cells. Together these results identify fetal conversion as a useful biomarker for patient prognosis and therapy prescription.
    DOI:  https://doi.org/10.1038/s41467-022-30382-9
  38. Mol Metab. 2022 May 19. pii: S2212-8778(22)00085-0. [Epub ahead of print] 101516
       OBJECTIVE: The prostate is metabolically unique: it produces high levels of citrate for secretion via a truncated tricarboxylic acid (TCA) cycle to maintain male fertility. In prostate cancer (PCa), this phenotype is reprogrammed, making it an interesting therapeutic target. However, how the truncated prostate TCA cycle works is still not completely understood.
    METHODS: We optimized targeted metabolomics in mouse and human organoid models in ex vivo primary culture. We then used stable isotope tracer analyses to identify the pathways that fuel citrate synthesis.
    RESULTS: First, mouse and human organoids were shown to recapitulate the unique citrate-secretory program of the prostate, thus representing a novel model that reproduces this unusual metabolic profile. Using stable isotope tracer analysis, several key nutrients were shown to allow the completion of the prostate TCA cycle, revealing a much more complex metabolic profile than originally anticipated. Indeed, along with the known pathway of aspartate replenishing oxaloacetate, glutamine was shown to fuel citrate synthesis through both glutaminolysis and reductive carboxylation in a GLS1-dependent manner. In human organoids, aspartate entered the TCA cycle at the malate entry point, upstream of oxaloacetate. Our results demonstrate that the citrate-secretory phenotype of prostate organoids is supported by the known aspartate-oxaloacetate-citrate pathway, but also by at least three additional pathways: glutaminolysis, reductive carboxylation, and aspartate-malate conversion.
    CONCLUSIONS: Our results add a significant new dimension to the prostate citrate-secretory phenotype, with at least four distinct pathways being involved in citrate synthesis. Better understanding this distinctive citrate metabolic program will have applications in both male fertility as well as in the development of novel targeted anti-metabolic therapies for PCa.
    Keywords:  TCA cycle; androgen; fertility; organoids; prostate cancer
    DOI:  https://doi.org/10.1016/j.molmet.2022.101516
  39. Redox Biol. 2022 May 13. pii: S2213-2317(22)00107-0. [Epub ahead of print]53 102335
      Mild impairment of mitochondrial function has been shown to increase lifespan in genetic model organisms including worms, flies and mice. To better understand the mechanisms involved, we analyzed RNA sequencing data and found that genes involved in the mitochondrial thioredoxin system, trx-2 and trxr-2, are specifically upregulated in long-lived mitochondrial mutants but not other non-mitochondrial, long-lived mutants. Upregulation of trx-2 and trxr-2 is mediated by activation of the mitochondrial unfolded protein response (mitoUPR). While we decided to focus on the genes of the mitochondrial thioredoxin system for this paper, we identified multiple other antioxidant genes that are upregulated by the mitoUPR in the long-lived mitochondrial mutants including sod-3, prdx-3, gpx-6, gpx-7, gpx-8 and glrx-5. In exploring the role of the mitochondrial thioredoxin system in the long-lived mitochondrial mutants, nuo-6 and isp-1, we found that disruption of either trx-2 or trxr-2 significantly decreases their long lifespan, but has no effect on wild-type lifespan, indicating that the mitochondrial thioredoxin system is specifically required for their longevity. In contrast, disruption of the cytoplasmic thioredoxin gene trx-1 decreases lifespan in nuo-6, isp-1 and wild-type worms, indicating a non-specific detrimental effect on longevity. Disruption of trx-2 or trxr-2 also decreases the enhanced resistance to stress in nuo-6 and isp-1 worms, indicating a role for the mitochondrial thioredoxin system in protecting against exogenous stressors. Overall, this work demonstrates an important role for the mitochondrial thioredoxin system in both stress resistance and lifespan resulting from mild impairment of mitochondrial function.
    Keywords:  Aging; Antioxidant; C. elegans; Mitochondria; Reactive oxygen species; Thioredoxin
    DOI:  https://doi.org/10.1016/j.redox.2022.102335
  40. Leukemia. 2022 May 26.
      Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved. Here, we show that CXCL12 produced by Prx1+ mesenchymal cells but not by mature osteolineage cells provide the necessary cues for the maintenance of LSCs in the marrow of an MLL::AF9-induced AML model. Prx1+ cells promote survival of LSCs by modulating energy metabolism and the REDOX balance in LSCs. Deletion of Cxcl12 leads to the accumulation of reactive oxygen species and DNA damage in LSCs, impairing their ability to perpetuate leukemia in transplantation experiments, a defect that can be attenuated by antioxidant therapy. Importantly, our data suggest that this phenomenon appears to be conserved in human patients. Hence, we have identified Prx1+ mesenchymal cells as an integral part of the complex niche-AML metabolic intertwining, pointing towards CXCL12/CXCR4 as a target to eradicate parenchymal LSCs in AML.
    DOI:  https://doi.org/10.1038/s41375-022-01601-5
  41. Biomedicines. 2022 Apr 20. pii: 955. [Epub ahead of print]10(5):
      Studies have demonstrated that metformin has antitumor effects in addition to therapeutic effects on hyperglycemia; however, few studies have explored the effects of metformin in chemotherapy. Therefore, we hypothesized that the administration of metformin would enhance the therapeutic effects of 5-fluorouracil and oxaliplatin (FuOx) to inhibit the growth of colorectal cancer (CRC) cells in vitro and in vivo. The results of our in vitro experiments demonstrated that metformin significantly increased the effects of FuOx with respect to cell proliferation (p < 0.05), colony formation (p < 0.05), and migration (p < 0.01) and induced cell cycle arrest in the G0/G1 phase in HT29 cells and the S phase in SW480 and SW620 cells (p < 0.05). Flow cytometry analysis revealed that metformin combined with FuOx induced late apoptosis (p < 0.05) by mediating mitochondria-related Mcl-1 and Bim protein expression. Furthermore, in vivo, metformin combined with FuOx more notably reduced tumor volume than FuOx or metformin alone did in BALB/c mice (p < 0.05). These findings demonstrate that metformin may act as an adjunctive agent to enhance the chemosensitivity of CRC cells to FuOx. However, further clinical trials are warranted to validate the clinical implications of the findings.
    Keywords:  5-fluorouracil/oxaliplatin; chemotherapy; colorectal cancer; metformin
    DOI:  https://doi.org/10.3390/biomedicines10050955