bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2022‒03‒06
43 papers selected by
Kelsey Fisher-Wellman, East Carolina University

  1. Brain. 2022 Mar 04. pii: awab303. [Epub ahead of print]
      Mitochondria are essential organelles found in every eukaryotic cell, required to convert food into usable energy. Therefore, it is not surprising that mutations in either mtDNA or nuclear DNA-encoded genes of mitochondrial proteins cause diseases affecting the oxidative phosphorylation system, which are heterogeneous from a clinical, genetic, biochemical and molecular perspective and can affect patients at any age. Despite all this, it is surprising that our understanding of the mechanisms governing mitochondrial gene expression and its associated pathologies remain superficial and therapeutic interventions largely unexplored. We recently showed that loss of the mitochondrial matrix protease caseinolytic protease proteolytic subunit (CLPP) ameliorates phenotypes in cells characterized by defects in oxidative phosphorylation maintenance. Here, we build upon this finding by showing that CLPP depletion is indeed beneficial in vivo for various types of neuronal populations, including Purkinje cells in the cerebellum and cortical and hippocampal neurons in the forebrain, as it strongly improves distinct phenotypes of mitochondria encephalopathy, driven by the deficiency of the mitochondrial aspartyl tRNA synthase DARS2. In the absence of CLPP, neurodegeneration of DARS2-deficient neurons is delayed as they present milder oxidative phosphorylation dysfunction. This in turn leads to a decreased neuroinflammatory response and significantly improved motor functions in both double-deficient models (Purkinje cell-specific or forebrain neuron-specific Dars2/Clpp double knockout mice). We propose that diminished turnover of respiratory complex I caused by the loss of CLPP is behind the improved phenotype in Dars2/Clpp double knockout animals, even though this intervention might not restore respiratory complex I activity but rather improve mitochondrial cristae morphology or help maintain the NAD+/NADH ratio inside mitochondria. These results also open the possibility of targeting CLPP activity in many other mitochondrial encephalopathies characterized by respiratory complex I instability.
    Keywords:  CLPP protease; DARS2 deficiency; LBSL; mitochondrial diseases
  2. Food Chem Toxicol. 2022 Feb 25. pii: S0278-6915(22)00094-1. [Epub ahead of print] 112896
      Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. From the leaves of Callistemon citrinus, we have isolated a novel phloroglucinol dimer, calcitrinone A, and analyzed its potential anticancer activity using the triple-negative breast cancer cell line MDA-MB-231. Calcitrinone A decreased the total intracellular ATP levels, inhibited proliferation, and induced apoptosis in MDA-MB-231 cells, but was less toxic to peripheral blood mononuclear cells. The antiproliferative and apoptosis-inducing effects of calcitrinone A were confirmed in vivo using breast cancer xenografts grown on chick chorioallantoic membranes. Mechanistic analysis showed mitochondrial membrane-potential dissipation and interference with energy-yielding processes resulting in cell accumulation in the S phase of the cell cycle. Seahorse assay analysis revealed an early inhibition of mitochondrial oxidative phosphorylation (OXPHOS). At the molecular level, calcitrinone A inhibited activity of the succinate-coenzyme Q reductase (SQR) (mitochondrial complex II). In silico docking identified the coenzyme Q binding pocket as a possible high affinity binding site for calcitrinone A in SQR. Inhibition of complex II was accompanied by strong elevation of mitochondrial superoxide and cytoplasmic ROS. Calcitrinone A might be a promising anticancer lead compound acting through the interference with the mitochondrial complex II activity.
    Keywords:  Breast cancer; Callistemon citrinus; Mitochondrial complex II; Phloroglucinol; ROS; Succinate dehydrogenase; succinate:ubiquinone oxidoreductase
  3. Function (Oxf). 2022 ;3(2): zqab065
      ATP synthase (F1Fo) synthesizes daily our body's weight in ATP, whose production-rate can be transiently increased several-fold to meet changes in energy utilization. Using purified mammalian F1Fo-reconstituted proteoliposomes and isolated mitochondria, we show F1Fo can utilize both ΔΨm-driven H+- and K+-transport to synthesize ATP under physiological pH = 7.2 and K+ = 140 mEq/L conditions. Purely K+-driven ATP synthesis from single F1Fo molecules measured by bioluminescence photon detection could be directly demonstrated along with simultaneous measurements of unitary K+ currents by voltage clamp, both blocked by specific Fo inhibitors. In the presence of K+, compared to osmotically-matched conditions in which this cation is absent, isolated mitochondria display 3.5-fold higher rates of ATP synthesis, at the expense of 2.6-fold higher rates of oxygen consumption, these fluxes being driven by a 2.7:1 K+: H+ stoichiometry. The excellent agreement between the functional data obtained from purified F1Fo single molecule experiments and ATP synthase studied in the intact mitochondrion under unaltered OxPhos coupling by K+ presence, is entirely consistent with K+ transport through the ATP synthase driving the observed increase in ATP synthesis. Thus, both K+ (harnessing ΔΨm) and H+ (harnessing its chemical potential energy, ΔμH) drive ATP generation during normal physiology.
    Keywords:  ATP synthesis; mitochondrial K+ transport; mitochondrial KATP channel; proteoliposomes; single molecule bioenergetics; unitary K+ currents
  4. Front Immunol. 2022 ;13 832159
      As the major hub of metabolic activity and an organelle sequestering pro-apoptogenic intermediates, mitochondria lie at the crossroads of cellular decisions of death and survival. Intracellular calcium is a key regulator of these outcomes with rapid, uncontrolled uptake into mitochondria, activating pro-apoptotic cascades that trigger cell death. Here, we show that calcium uptake and mitochondrial metabolism in murine T-regulatory cells (Tregs) is tuned by Notch1 activity. Based on analysis of Tregs and the HEK cell line, we present evidence that modulation of cellular calcium dynamics underpins Notch1 regulation of mitochondrial homeostasis and consequently anti-apoptotic activity. Targeted siRNA-mediated ablations reveal dependency on molecules controlling calcium release from the endoplasmic reticulum (ER) and the chaperone, glucose-regulated protein 75 (Grp75), the associated protein Voltage Dependent Anion Channel (VDAC)1 and the Mitochondrial Calcium Uniporter (MCU), which together facilitate ER calcium transfer and uptake into the mitochondria. Endogenous Notch1 is detected in immune-complexes with Grp75 and VDAC1. Deficits in mitochondrial oxidative and survival in Notch1 deficient Tregs, were corrected by the expression of recombinant Notch1 intracellular domain, and in part by recombinant Grp75. Thus, the modulation of calcium dynamics and consequently mitochondrial metabolism underlies Treg survival in conditions of nutrient stress. This work positions a key role for Notch1 activity in these outcomes.
    Keywords:  Grp75; NOTCH1; Tregs; apoptosis; calcium; mammalian cells; mitochondria; oxphos
  5. FEBS Lett. 2022 Mar 02.
      NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in cellular energy metabolism. Complex I deficiencies are the most common cause of mitochondrial dysfunction. Patients suffering from a variety of neurodegenerative diseases carry numerous mutations in the mitochondrially encoded subunits of the complex. The biochemical consequences of these mutations are largely unknown because these genes are difficult to access experimentally. Here, we use Escherichia coli as a model system to characterize the effect of a 7 bp inversion in mtND1 (m.3902-3908inv7) that results in a triple mutation. The triple mutant grew poorly but contained a normal amount of the stably assembled variant. The variant showed no enzymatic activity, which might contribute to the deleterious effect of the mutation in humans.
    Keywords:   Escherichia coli ; NADH dehydrogenase; NADH:quinone oxidoreductase; mitochondrial DNA; pathological mutations; quinone reduction
  6. J Vis Exp. 2022 Feb 10.
      Most of the cell's energy is obtained through the degradation of glucose, fatty acids, and amino acids by different pathways that converge on the mitochondrial oxidative phosphorylation (OXPHOS) system, which is regulated in response to cellular demands. The lipid molecule Coenzyme Q (CoQ) is essential in this process by transferring electrons to complex III in the electron transport chain (ETC) through constant oxidation/reduction cycles. Mitochondria status and, ultimately, cellular health can be assessed by measuring ETC oxygen consumption using respirometric assays. These studies are typically performed in established or primary cell lines that have been cultured for several days. In both cases, the respiration parameters obtained may have deviated from normal physiological conditions in any given organ or tissue. Additionally, the intrinsic characteristics of cultured single fibers isolated from skeletal muscle impede this type of analysis. This paper presents an updated and detailed protocol for the analysis of respiration in freshly isolated mitochondria from mouse skeletal muscle. We also provide solutions to potential problems that could arise at any step of the process. The method presented here could be applied to compare oxygen consumption rates in diverse transgenic mouse models and study the mitochondrial response to drug treatments or other factors such as aging or sex. This is a feasible method to respond to crucial questions about mitochondrial bioenergetics metabolism and regulation.
  7. Oncogene. 2022 Mar 02.
      Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.
  8. FASEB J. 2022 04;36(4): e22226
      Black and Hispanic cancer patients have a higher incidence of cancer mortality. Many factors (e.g., socioeconomic differences, insufficient access to healthcare) contribute to racial disparity. Emerging research implicates biological disparity in cancer outcomes. Studies show distinct differences in the tumor immune microenvironment (TIME) in Black cancer patients. Studies also have linked altered mitochondrial metabolism to changes in immune cell activation in TIME. Recent publications revealed a novel immunomodulatory role for triphenylphosphonium-based mitochondrial-targeted drugs (MTDs). These are synthetically modified, naturally occurring molecules (e.g., honokiol, magnolol, metformin) or FDA-approved small molecule drugs (e.g., atovaquone, hydroxyurea). Modifications involve conjugating the parent molecule via an alkyl linker chain to a triphenylphosphonium moiety. These modified molecules (e.g., Mito-honokiol, Mito-magnolol, Mito-metformin, Mito-atovaquone, Mito-hydroxyurea) accumulate in tumor cell mitochondria more effectively than in normal cells and inhibit mitochondrial respiration, induce reactive oxygen species, activate AMPK and redox transcription factors, and inhibit cancer cell proliferation. Besides these intrinsic effects of MTDs in redox signaling and proliferation in tumors, MTDs induced extrinsic effects in the TIME of mouse xenografts. MTD treatment inhibited tumor-suppressive immune cells, myeloid-derived suppressor cells, and regulatory T cells, and activated T cells and antitumor immune effects. One key biological disparity in Black cancer patients was related to altered mitochondrial oxidative metabolism; MTDs targeting vulnerabilities in tumor cells and the TIME may help us understand this biological disparity. Clinical trials should include an appropriate number of Black and Hispanic cancer patients and should validate the intratumoral, antihypoxic effects of MTDs with imaging.
    Keywords:  OXPHOS inhibitors; mitochondrial drugs; racial disparity; tumor microenvironment
  9. Eur J Med Chem. 2022 Feb 18. pii: S0223-5234(22)00102-7. [Epub ahead of print]232 114200
      Since more than 85% of lung cancer cases are non-small cell lung cancer (NSCLC), finding novel agents with anti-tumor activities is meaningful for NSCLC patients. Mitochondria is essential for cellular energy metabolism in cancer, and regulating mitochondrial bioenergetics is emerging as a practical approach for cancer treatment and prevention. The carbazole scaffold is an active structure showing anti-cancer biological activity, and the structural diversity has been expanded through the improvement and optimization of synthesizing methods. To find novel carbazole derivatives with great anti-tumor potential and explore structures variety, we designed and synthesized a series of 9-(pyrimidin-2-yl)-9H-carbazole derivatives based on the previously reported Cp∗Rh(III)/H+ tandem catalytic system. With thoroughly bioactivity exploration, we found benzo[d] [1,3]dioxol-5-yl(9-(pyrimidin-2-yl)-9H-carbazol-1-yl)methanone (compound 5n) showed notable activity in disrupting the mitochondrial homeostasis, induced cell cycle arrest and apoptosis in human adenocarcinoma cells, and finally showed anti-tumor activity in an NSCLC-xenograft mice model.
    Keywords:  Apoptosis; Carbazole derivatives; Lung adenocarcinoma; Mitochondrial energy metabolism; Mitochondrial function
  10. Aging Cell. 2022 Mar 02. e13564
      Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes' susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.
    Keywords:  ATP; ROS; aging; dicarbonyl stress; mitochondria
  11. Elife. 2022 Mar 02. pii: e75658. [Epub ahead of print]11
      Mitochondrial biogenesis has two major steps: the transcriptional activation of nuclear genome-encoded mitochondrial proteins and the import of nascent mitochondrial proteins that are synthesized in the cytosol. These nascent mitochondrial proteins are aggregation-prone and can cause cytosolic proteostasis stress. The transcription factor-dependent transcriptional regulations and the TOM-TIM complex-dependent import of nascent mitochondrial proteins have been extensively studied. Yet, little is known regarding how these two steps of mitochondrial biogenesis coordinate with each other to avoid the cytosolic accumulation of these aggregation-prone nascent mitochondrial proteins. Here we show that in budding yeast, Tom70, a conserved receptor of the TOM complex, moonlights to regulate the transcriptional activity of mitochondrial proteins. Tom70's transcription regulatory role is conserved in Drosophila. The dual roles of Tom70 in both transcription/biogenesis and import of mitochondrial proteins allow the cells to accomplish mitochondrial biogenesis without compromising cytosolic proteostasis. The age-related reduction of Tom70, caused by reduced biogenesis and increased degradation of Tom70, is associated with the loss of mitochondrial membrane potential, mtDNA, and mitochondrial proteins. While loss of Tom70 accelerates aging and age-related mitochondrial defects, overexpressing TOM70 delays these mitochondrial dysfunctions and extends the replicative lifespan. Our results reveal unexpected roles of Tom70 in mitochondrial biogenesis and aging.
    Keywords:  S. cerevisiae; cell biology
  12. JCI Insight. 2022 Mar 01. pii: e150696. [Epub ahead of print]
      The importance of healthy mitochondrial function is implicated in the prevention of chronic/diabetic kidney diseases (CKD/DKD). Sex differences also play an important role in DKD. Our previous studies revealed that mitochondrial substrate overload (modeled by homozygous deletion of carnitine acetyl-transferase - CrAT) in proximal tubules causes renal injury. Here we demonstrate the importance of intact mitochondrial substrate efflux by titrating the amount of overload through the generation of a heterozygous CrAT knockout model ("PT-CrATHET" mouse). Intriguingly, these animals developed renal injury similarly to their homozygous counterparts. Mitochondria were structurally and functionally impaired in both sexes. Transcriptomic analyses, however, revealed striking sex differences. Male mice shut down fatty acid oxidation and several other metabolism-related pathways. Females had a significantly weaker transcriptional response in metabolism but activation of inflammatory pathways was prominent. Proximal tubular cells from PT-CrATHET mice of both sexes exhibited a shift towards a more glycolytic phenotype, but females were still able to oxidize fatty acid-based substrates. Our results demonstrate that maintaining mitochondrial substrate metabolism balance is crucial to satisfy proximal tubular energy demand. Our findings have potentially broad implications as both the glycolytic shift and the sexual dimorphisms discovered herein offer new modalities for future interventions for treating kidney disease.
    Keywords:  Chronic kidney disease; Fatty acid oxidation; Metabolism; Mitochondria; Nephrology
  13. Cell Rep. 2022 Mar 01. pii: S2211-1247(22)00180-2. [Epub ahead of print]38(9): 110453
      Inherited pathogenic succinate dehydrogenase (SDHx) gene mutations cause the hereditary pheochromocytoma and paraganglioma tumor syndrome. Syndromic tumors exhibit elevated succinate, an oncometabolite that is proposed to drive tumorigenesis via DNA and histone hypermethylation, mitochondrial expansion, and pseudohypoxia-related gene expression. To interrogate this prevailing model, we disrupt mouse adrenal medulla SDHB expression, which recapitulates several key molecular features of human SDHx tumors, including succinate accumulation but not 5hmC loss, HIF accumulation, or tumorigenesis. By contrast, concomitant SDHB and the neurofibromin 1 tumor suppressor disruption yields SDHx-like pheochromocytomas. Unexpectedly, in vivo depletion of the 2-oxoglutarate (2-OG) dioxygenase cofactor ascorbate reduces SDHB-deficient cell survival, indicating that SDHx loss may be better tolerated by tissues with high antioxidant capacity. Contrary to the prevailing oncometabolite model, succinate accumulation and 2-OG-dependent dioxygenase inhibition are insufficient for mouse pheochromocytoma tumorigenesis, which requires additional growth-regulatory pathway activation.
    Keywords:  SDHB; adrenal gland; ascorbate; cancer; mouse model; neuroendocrine; oncometabolite; pheochromocytoma; succinate dehydrogenase; tumor
  14. Cancer Cell. 2022 Feb 28. pii: S1535-6108(22)00058-7. [Epub ahead of print]
      Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis. We report a comprehensive proteogenomic analysis of bone marrow biopsies from 252 uniformly treated AML patients to elucidate the molecular pathophysiology of AML in order to inform future diagnostic and therapeutic approaches. In addition to in-depth quantitative proteomics, our analysis includes cytogenetic profiling and DNA/RNA sequencing. We identify five proteomic AML subtypes, each reflecting specific biological features spanning genomic boundaries. Two of these proteomic subtypes correlate with patient outcome, but none is exclusively associated with specific genomic aberrations. Remarkably, one subtype (Mito-AML), which is captured only in the proteome, is characterized by high expression of mitochondrial proteins and confers poor outcome, with reduced remission rate and shorter overall survival on treatment with intensive induction chemotherapy. Functional analyses reveal that Mito-AML is metabolically wired toward stronger complex I-dependent respiration and is more responsive to treatment with the BCL2 inhibitor venetoclax.
    Keywords:  BCL-2 inhibitor; acute myeloid leukemia; chemotherapy; mitochondrial oxidative phosphorylation; multi-omics data integration; proteogenomics; proteomics; venetoclax
  15. Adv Sci (Weinh). 2022 Mar 04. e2101267
      Atovaquone, an FDA-approved drug for malaria, is known to inhibit mitochondrial electron transport. A recently synthesized mitochondria-targeted atovaquone increased mitochondrial accumulation and antitumor activity in vitro. Using an in situ vaccination approach, local injection of mitochondria-targeted atovaquone into primary tumors triggered potent T cell immune responses locally and in distant tumor sites. Mitochondria-targeted atovaquone treatment led to significant reductions of both granulocytic myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. Mitochondria-targeted atovaquone treatment blocks the expression of genes involved in oxidative phosphorylation and glycolysis in granulocytic-myeloid-derived suppressor cells and regulatory T cells, which may lead to death of granulocytic-myeloid-derived suppressor cells and regulatory T cells. Mitochondria-targeted atovaquone inhibits expression of genes for mitochondrial complex components, oxidative phosphorylation, and glycolysis in both granulocytic-myeloid-derived suppressor cells and regulatory T cells. The resulting decreases in intratumoral granulocytic-myeloid-derived suppressor cells and regulatory T cells could facilitate the observed increase in tumor-infiltrating CD4+ T cells. Mitochondria-targeted atovaquone also improves the anti-tumor activity of PD-1 blockade immunotherapy. The results implicate granulocytic-myeloid-derived suppressor cells and regulatory T cells as novel targets of mitochondria-targeted atovaquone that facilitate its antitumor efficacy.
    Keywords:  in situ vaccination; lung cancer; mitochondria-targeted atovaquone; mitochondrial bioenergetics; tumor immune microenvironment
  16. Mol Metab. 2022 Feb 24. pii: S2212-8778(22)00035-7. [Epub ahead of print] 101466
      Cell lineage reprogramming is the main way for cancer cells to acquire drug resistance and escape targeted therapy. The use of potent targeted therapies in cancers has led to the development of highly aggressive carcinoma, including neuroendocrine prostate cancer (NEPC). Although metabolic reprogramming has been reported to be essential for tumor growth and energy production, the relationship between metabolic reprogramming and lineage differentiation which can cause the hormone therapy resistance has never been reported in prostate cancer (PCa). Moreover, as there is still no efficient therapy for NEPC, it is urgent to reverse this lineage differentiation during the hormone therapy. Here for the first time, we used in vitro and in vivo human PCa models to study the effect of metabolic reprogramming on the lineage differentiation from androgen receptor (AR)-dependent adenocarcinoma to AR-independent NEPC. This lineage differentiation leads to the antiandrogen drug resistance and tumor development. This phenotype is enabled by the loss of mitochondrial pyruvate carrier (MPC), the gate for mitochondrial pyruvate influx, and can be reversed by MPC overexpression. Morphologic and cellular studies also demonstrate the M2-pyruvate kinase (PKM2) involved epithelium-mesenchymal transition process mediated this lineage alteration. Its inhibition is a potential treatment for MPC-lo tumors. All of these results suggest that metabolic rewiring can act as a starter for increased cellular plasticity which leads to antiandrogen therapy resistance through lineage differentiation. This study provides us a potent treatment target for therapy induced, enzalutamide resistant NE like prostate cancer.
    Keywords:  castration-resistant prostate cancer; metabolic reprogramming; mitochondrial pyruvate carrier; neuroendocrine prostate cancer
  17. Front Oncol. 2022 ;12 841054
      Kidney cancer is one of the top ten cancer diagnosed worldwide and its incidence has increased the last 20 years. Clear Cell Renal Cell Carcinoma (ccRCC) are characterized by mutations that inactivate the von Hippel-Lindau (VHL) tumor suppressor gene and evidence indicated alterations in metabolic pathways, particularly in glutamine metabolism. We previously identified a small molecule, STF-62247, which target VHL-deficient renal tumors by affecting late-stages of autophagy and lysosomal signaling. In this study, we investigated ccRCC metabolism in VHL-deficient and proficient cells exposed to the small molecule. Metabolomics profiling using 1H NMR demonstrated that STF-62247 increases levels of glucose, pyruvate, glycerol 3-phosphate while glutamate, asparagine, and glutathione significantly decreased. Diminution of glutamate and glutamine was further investigated using mass spectrometry, western blot analyses, enzymatic activities, and viability assays. We found that expression of SLC1A5 increases in VHL-deficient cells treated with STF-62247, possibly to stimulate glutamine uptake intracellularly to counteract the diminution of this amino acid. However, exogenous addition of glutamine was not able to rescue cell viability induced by the small molecule. Instead, our results showed that VHL-deficient cells utilize glutamine to produce fatty acid in response to STF-62247. Surprisingly, this occurs through oxidative phosphorylation in STF-treated cells while control cells use reductive carboxylation to sustain lipogenesis. We also demonstrated that STF-62247 stimulated expression of stearoyl-CoA desaturase (SCD1) and peripilin2 (PLIN2) to generate accumulation of lipid droplets in VHL-deficient cells. Moreover, the carnitine palmitoyltransferase 1A (CPT1A), which control the entry of fatty acid into mitochondria for β-oxidation, also increased in response to STF-62247. CPT1A overexpression in ccRCC is known to limit tumor growth. Together, our results demonstrated that STF-62247 modulates cellular metabolism of glutamine, an amino acid involved in the autophagy-lysosome process, to support lipogenesis, which could be implicated in the signaling driving to cell death.
    Keywords:  CCRCC kidney cancer; cancer; fatty acid; glutamine (Gln); lipid droplet (LD); metabolomics; von Hippel – Lindau
  18. Development. 2022 Mar 03. pii: dev.200458. [Epub ahead of print]
      The mitochondrial matrix AAA+ Lon protease (LONP1) degrades misfolded or unassembled proteins, which play a pivotal role in mitochondrial quality control. During heart development, a metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation takes place, and this process relies highly on functional mitochondria. However, the relationship between mitochondrial quality control machinery and metabolic shifts is elusive. Here, we interfered with mitochondrial quality control by inactivating Lonp1 in embryonic cardiac tissue and found severely impaired heart development, leading to embryonic lethality. Mitochondrial swelling, cristae loss and abnormal protein aggregates were evident in the mitochondria of Lonp1-deficient cardiomyocytes. Accordingly, the p-eIF2α-ATF4 pathway was triggered, and nuclear translocation of ATF4 was observed. We further demonstrated that ATF4 negatively regulates the expression of Tfam while promoting that of Glut1, which was responsible for the disruption of the metabolic shift to oxidative phosphorylation. Meanwhile, elevated levels of reactive oxygen species were observed in Lonp1 mutant cardiomyocytes. This study revealed that LONP1 safeguards metabolic shifts in the developing heart by controlling mitochondrial protein quality and implies that disrupted mitochondrial quality control may cause prenatal cardiomyopathy.
    Keywords:  ATF4; Glycolysis; Heart development; LONP1; Metabolic shift; Mitochondrial quality control; Oxidative phosphorylation
  19. Nat Commun. 2022 Mar 01. 13(1): 1105
      Acute myeloid leukemia remains difficult to treat due to strong genetic heterogeneity between and within individual patients. Here, we show that Pyruvate dehydrogenase kinase 1 (PDK1) acts as a targetable determinant of different metabolic states in acute myeloid leukemia (AML). PDK1low AMLs are OXPHOS-driven, are enriched for leukemic granulocyte-monocyte progenitor (L-GMP) signatures, and are associated with FLT3-ITD and NPM1cyt mutations. PDK1high AMLs however are OXPHOSlow, wild type for FLT3 and NPM1, and are enriched for stemness signatures. Metabolic states can even differ between genetically distinct subclones within individual patients. Loss of PDK1 activity releases glycolytic cells into an OXPHOS state associated with increased ROS levels resulting in enhanced apoptosis in leukemic but not in healthy stem/progenitor cells. This coincides with an enhanced dependency on glutamine uptake and reduced proliferation in vitro and in vivo in humanized xenograft mouse models. We show that human leukemias display distinct metabolic states and adaptation mechanisms that can serve as targets for treatment.
  20. Free Radic Biol Med. 2022 Feb 23. pii: S0891-5849(22)00075-2. [Epub ahead of print]
      Professor Bruce Ames demonstrated that nutritional recommendations should be adjusted in order to 'tune-up' metabolism and reduce mitochondria decay, a hallmark of aging and many disease processes. A major subset of tunable nutrients are the minerals, which despite being integral to every aspect of metabolism are often deficient in the typical Western diet. Mitochondria are particularly rich in minerals, where they function as essential cofactors for mitochondrial physiology and overall cellular health. Yet substantial knowledge gaps remain in our understanding of the form and function of these minerals needed for metabolic harmony. Some of the minerals have known activities in the mitochondria but with incomplete regulatory detail, whereas other minerals have no established mitochondrial function at all. A comprehensive metallome of the mitochondria is needed to fully understand the patterns and relationships of minerals within metabolic processes and cellular development. This brief overview serves to highlight the current progress towards understanding mineral homeostasis in the mitochondria and to encourage more research activity in key areas. Future work may likely reveal that adjusting the amounts of specific nutritional minerals has longevity benefits for human health.
    Keywords:  Differentiation; Metals; Minerals; Mitochondria; Redox
  21. Sci Transl Med. 2022 Mar 02. 14(634): eabl6992
      SERAC1 deficiency is associated with the mitochondrial 3-methylglutaconic aciduria with deafness, (hepatopathy), encephalopathy, and Leigh-like disease [MEGD(H)EL] syndrome, but the role of SERAC1 in mitochondrial physiology remains unknown. Here, we generated Serac1-/- mice that mimic the major diagnostic clinical and biochemical phenotypes of the MEGD(H)EL syndrome. We found that SERAC1 localizes to the outer mitochondrial membrane and is a protein component of the one-carbon cycle. By interacting with the mitochondrial serine transporter protein SFXN1, SERAC1 facilitated and was required for SFXN1-mediated serine transport from the cytosol to the mitochondria. Loss of SERAC1 impaired the one-carbon cycle and disrupted the balance of the nucleotide pool, which led to primary mitochondrial DNA (mtDNA) depletion in mice, HEK293T cells, and patient-derived immortalized lymphocyte cells due to insufficient supply of nucleotides. Moreover, both in vitro and in vivo supplementation of nucleosides/nucleotides restored mtDNA content and mitochondrial function. Collectively, our findings suggest that MEGD(H)EL syndrome shares both clinical and molecular features with the mtDNA depletion syndrome, and nucleotide supplementation may be an effective therapeutic strategy for MEGD(H)EL syndrome.
  22. Biomed Res Int. 2022 ;2022 7436577
      The mitochondrial unfolded protein response (UPRmt) can repair and remove misfolded or unfolded proteins in mitochondria and enhance mitochondrial protein homeostasis. Reactive oxygen species (ROS) produced by regular exercise is a crucial signal for promoting health, and skeletal muscle mitochondria are the primary source of ROS during exercise. To verify whether UPRmt is related to ROS produced by mitochondria in skeletal muscle during regular exercise, we adapted MitoTEMPO, mitochondrially targeted antioxidants, and ROS production by mitochondria. Our results showed that mitochondrial ROS is the key factor for activating UPRmt in different pathways.
  23. Circulation. 2022 Mar 03.
      Background: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is uniparentally transmitted and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of more than one mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent non-pathological mtDNAs heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. Methods: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiological and phenotyping techniques. We focused on in vivo imaging techniques for non-invasive assessment of cardiac and pulmonary energy metabolism. Results: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. Conclusions: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.
  24. Proc Natl Acad Sci U S A. 2022 Mar 08. 119(10): e2122287119
      SignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo.
    Keywords:  biguanides; complex I; complex IV; gluconeogenesis; redox
  25. J Clin Invest. 2022 Mar 01. pii: e157434. [Epub ahead of print]132(5):
      Macrophages within the bone marrow (BM) microenvironment take on unexpected roles in acute myeloid leukemia (AML) as reported by Moore and colleagues in this issue of the JCI. In contrast to solid tumors, where tumor-associated macrophages frequently assume an immunosuppressive phenotype that promotes tumor progression, this study revealed that BM macrophages repressed leukemia expansion in AML through a pathway called LC3-associated phagocytosis (LAP). After phagocytosis of dead and dying leukemic cells, including the mitochondria within the leukemic blasts, mitochondrial DNA activated stimulator of IFN genes (STING), leading to inflammatory signals that enhanced phagocytosis and restrained leukemic cell expansion. These findings unveil the modulation of macrophage-mediated phagocytosis via LAP as a potential therapeutic strategy directed at the BM microenvironment in AML.
  26. Front Oncol. 2022 ;12 832816
      Blocking the pyrimidine nucleotide de novo synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several in vitro and in vivo models of the disease. Broad potent activity was demonstrated against multiple AML cell lines, AML blasts cultured ex vivo from patient blood samples, and AML tumor models including patient-derived xenograft models. Emvododstat induced differentiation, cytotoxicity, or both in primary AML patient blasts cultured ex vivo with 8 of 10 samples showing sensitivity. AML cells with diverse driver mutations were sensitive, suggesting the potential of emvododstat for broad therapeutic application. AML cell lines that are not sensitive to emvododstat are likely to be more reliant on the salvage pathway than on de novo synthesis of pyrimidine nucleotides. Pharmacokinetic experiments in rhesus monkeys demonstrated that emvododstat levels rose rapidly after oral administration, peaking about 2 hours post-dosing. This was associated with an increase in the levels of dihydroorotate (DHO), the substrate for DHODH, within 2 hours of dosing indicating that DHODH inhibition is rapid. DHO levels declined as drug levels declined, consistent with the reversibility of DHODH inhibition by emvododstat. These preclinical findings provide a rationale for clinical evaluation of emvododstat in an ongoing Phase 1 study of patients with relapsed/refractory acute leukemias.
    Keywords:  AML; DHODH; PTC299; differentiation; dihydroorotate dehydrogenase; emvododstat; pyrimidine nucleotide de novo synthesis
  27. Cell Rep. 2022 Mar 01. pii: S2211-1247(22)00173-5. [Epub ahead of print]38(9): 110446
      The factors that promote T cell expansion are not fully known. Creatine is an abundant circulating metabolite that has recently been implicated in T cell function; however, its cell-autonomous role in immune-cell function is unknown. Here, we show that creatine supports cell-intrinsic CD8+ T cell homeostasis. We further identify creatine kinase B (CKB) as the creatine kinase isoenzyme that supports these T cell properties. Loss of the creatine transporter (Slc6a8) or Ckb results in compromised CD8+ T cell expansion in response to infection without influencing adenylate energy charge. Rather, loss of Slc6a8 or Ckb disrupts naive T cell homeostasis and weakens TCR-mediated activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling required for CD8+ T cell expansion. These data demonstrate a cell-intrinsic role for creatine transport and creatine transphosphorylation, independent of their effects on global cellular energy charge, in supporting CD8+ T cell homeostasis and effector function.
    Keywords:  CD8+ T cells; adoptive transfer; creatine kinase; creatine metabolism; infection
  28. Nat Metab. 2022 Feb;4(2): 225-238
      Many types of cancer feature TP53 mutations with oncogenic properties. However, whether the oncogenic activity of mutant p53 is affected by the cellular metabolic state is unknown. Here we show that cancer-associated mutant p53 protein is stabilized by 2-hydroxyglutarate generated by malic enzyme 2. Mechanistically, malic enzyme 2 promotes the production of 2-hydroxyglutarate by adjusting glutaminolysis, as well as through a reaction that requires pyruvate and NADPH. Malic enzyme 2 depletion decreases cellular 2-hydroxyglutarate levels in vitro and in vivo, whereas elevated malic enzyme 2 expression increases 2-hydroxyglutarate production. We further show that 2-hydroxyglutarate binds directly to mutant p53, which reduces Mdm2-mediated mutant p53 ubiquitination and degradation. 2-Hydroxyglutarate supplementation is sufficient for maintaining mutant p53 protein stability in malic enzyme 2-depleted cells, and restores tumour growth of malic enzyme 2-ablated cells, but not of cells that lack mutant p53. Our findings reveal the previously unrecognized versatility of malic enzyme 2 catalytic functions, and uncover a role for mutant p53 in sensing cellular 2-hydroxyglutarate levels, which contribute to the stabilization of mutant p53 and tumour growth.
  29. Proc Biol Sci. 2022 Mar 09. 289(1970): 20212679
      It is increasingly being postulated that among-individual variation in mitochondrial function underlies variation in individual performance (e.g. growth rate) and state of health. It has been suggested (but not adequately tested) that environmental conditions experienced before birth could programme postnatal mitochondrial function, with persistent effects potentially lasting into adulthood. We tested this hypothesis in an avian model by experimentally manipulating prenatal conditions (incubation temperature and stability) and then measuring mitochondrial aerobic metabolism in blood cells from the same individuals during the middle of the growth period and at adulthood. Mitochondrial aerobic metabolism changed markedly across life stages, and parts of these age-related changes were influenced by the prenatal temperature conditions. A high incubation temperature induced a consistent and long-lasting increase in mitochondrial aerobic metabolism. Postnatal mitochondrial aerobic metabolism was positively associated with oxidative damage on DNA but not telomere length. While we detected significant within-individual consistency in mitochondrial aerobic metabolism across life stages, the prenatal temperature regime only accounted for a relatively small proportion (less than 20%) of the consistent among-individual differences we observed. Our results demonstrate that prenatal conditions can programme consistent and long-lasting differences in mitochondrial function, which could potentially underlie among-individual variation in performance and health state.
    Keywords:  Japanese quail; bioenergetics; developmental programming; mitochondria; oxidative stress; telomeres
  30. Mol Cell. 2022 Mar 03. pii: S1097-2765(22)00108-3. [Epub ahead of print]82(5): 1066-1077.e7
      The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.
    Keywords:  acetylation; cell cycle; lamin; metabolism; mitochondria; mitofusin; nucleus; protein trafficking; pyruvate dehydrogenase complex; tethering
  31. Bioact Mater. 2022 Jul;13 191-199
      Reversal of cancer drug resistance remains a critical challenge in chemotherapy. Mitochondria-targeted drug delivery has been suggested to mitigate drug resistance in cancer. To overcome the intrinsic limitations in conventional mitochondrial targeting strategies, we develop mitochondrial temperature-responsive drug delivery to reverse doxorubicin (DOX) resistance in lung cancer. Results demonstrate that the thermoresponsive nanocarrier can prevent DOX efflux and facilitate DOX accumulation and mitochondrial targeting in DOX-resistant tumors. As a consequence, thermoresponsive nanocarrier enhances the cytotoxicity of DOX and reverses the drug resistance in tumor-bearing mice. This work represents the first example of mitochondrial temperature-responsive drug delivery for reversing cancer drug resistance.
    Keywords:  Drug delivery; Drug resistance; Mitochondrial temperature; Nanomedicines; Thermoresponsive
  32. Trends Cell Biol. 2022 Feb 24. pii: S0962-8924(22)00034-4. [Epub ahead of print]
      Intracellular long-lived proteins (LLPs) provide structural support for several highly stable protein complexes and assemblies that play essential roles in ensuring cellular homeostasis and function. Recently, mitochondrial long-lived proteins (mt-LLPs) were discovered within inner mitochondria membranes (IMMs) and cristae invagination in tissues with old postmitotic cells. This observation is at odds with the fact that mitochondria are highly dynamic organelles that are continually remodeled through processes of fission, fusion, biogenesis, and multiple quality control pathways. In this opinion article, we propose that a subset of the mitochondrial proteome persists over long time frames and these mt-LLPs provide key structural support for the lifelong maintenance of mitochondrial structure.
    Keywords:  cristae ultrastructure; long-lived proteins; mitochondria; mitochondrial dynamics; protein turnover; stable structures
  33. Front Pharmacol. 2022 ;13 847048
      Mitochondria, as one of the most critical subcellular organelles of cancer cells, are very vulnerable and often on the verge of oxidative stress. The classic chemodynamic therapy (CDT) directly employs endogenous chemical energy to trigger reactive oxygen species (ROS) burst and destroy tumor cells. However, the effectiveness of CDT is restricted by the limited diffusion distance and short half-life of ROS. From this perspective, the treatment method (mitochondria-targeting chemodynamic therapy nanodrugs, M-CDT nanodrugs) that can generate high levels of ROS at the mitochondrial site is extremely efficient and promising for cancer treatment. Currently, many emerging M-CDT nanodrugs have been demonstrated excellent spatial specificity and anti-cancer efficacy. In this minireview, we review various proof-of-concept researches based on different M-CDT nanodrugs designs to overcome the limits of the efficacy of CDT, mainly divided into four strategies: supplying H2O2, non-H2O2 dependent CDT, eliminating GSH and enhancing by hyperthermia therapy (HT). These well-designed M-CDT nanodrugs greatly increase the efficacy of CDT. Finally, the progress and potential of M-CDT nanodrugs are discussed, as well as their limitations and opportunities.
    Keywords:  cancer therapy; chemodynamic therapy; mitochondria-targeting; nanomaterials; reactive oxygen species
  34. Biochem Res Int. 2022 ;2022 9394356
      Palm oil (crude or refined) and lard are rich in SFA, while olive oil is rich in polyunsaturated fatty acids. SFA are considered harmful to health, while polyunsaturated fatty acids are beneficial to health. The aim of this study was to determine the effect of diets rich in crude PO, refined PO, OO, or lard on the mitochondrial membrane, the activity of mitochondrial respiratory chain complexes, and mitochondrial biogenesis. This was an experimental study in male Wistar rats fed a diet containing 30% of each oil. Rats had free access to food and water. After being fed for 12 weeks, animals were sacrificed and liver mitochondria were collected. This collection was used to determine membrane potential and ROS production, membrane phospholipid and fatty acid composition, citrate synthase activity and respiratory chain complex, cardiolipin synthase protein expression, and expression of selected genes involved in mitochondrial biogenesis. We found that diets rich in olive oil, palm oil, or lard altered mitochondrial biogenesis by significantly decreasing Pgc1α gene expression and altered the fatty acid composition of rat liver mitochondrial membrane PL.
  35. Front Genet. 2021 ;12 817672
      Background: The mitochondrial-associated protein leucine-rich pentatricopeptide repeat-containing (LRPPRC) exerts multiple functions involved in physiological processes, including mitochondrial gene translation, cell cycle progression, and tumorigenesis. Previously, LRPPRC was reported to regulate mitophagy by interacting with Bcl-2 and Beclin-1 and thus modifying the activation of PI3KCIII and autophagy. Considering that LRPPRC was found to be negatively associated with survival rate, we hypothesize that LRPPRC may be involved in pancreatic cancer progression via its regulation of autophagy. Methods: Real-time quantitative polymerase chain reaction was performed to detect the expression of LRPPRC in 90 paired pancreatic cancer and adjacent tissues and five pancreatic cancer cell lines. Mitochondrial reactive oxidative species level and function were measured. Mitophagy was measured by performing to detect LC3 levels. Results: By performing a real-time quantitative polymerase chain reaction, the association of LRPPRC with the prognosis of pancreatic cancer was established, and pancreatic cancer tissues had significantly higher LRPPRC expression than adjacent tissues. LRPPRC was negatively associated with the overall survival rate. LRPPRC was also upregulated in pancreatic cancer cell lines. Knockdown of LRPPRC promoted reactive oxidative species accumulation, decreased mitochondrial membrane potential, promoted autophagy/mitophagy, and induced mitochondrial dysfunction. Subsequently, knockdown of LRPPRC inhibited malignant behaviors in PANC-1 cells, including proliferation, migration, invasion, tumor formation, and chemoresistance to gemcitabine. Finally, by inhibiting autophagy/mitophagy using 3-MA, the inhibitory effect of LRPPRC knockdown on proliferation was reversed. Conclusion: Taken together, our results indicate that LRPPRC may act as an oncogene via maintaining mitochondrial homeostasis and could be used as a predictive marker for patient prognosis in pancreatic cancer.
    Keywords:  LRPPRC; autophagy/mitophagy; chemoresistance; mitochondrial homeostasis; pancreatic cancer; reactive oxygen species (ROS)
  36. Cell Death Dis. 2022 Mar 02. 13(3): 199
      We have previously demonstrated that extracellular adenosine 5'-triphosphate (ATP) promotes breast cancer cell chemoresistance. However, the underlying mechanism remains unclear. Using a cDNA microarray, we demonstrated that extracellular ATP can stimulate hypoxia-inducible factor (HIF) signaling. In this study, we report that hypoxia-inducible factor 1α (HIF-1α) was upregulated after ATP treatment and mediated the ATP-driven chemoresistance process. We aimed to investigate the mechanisms and identify potential clinically relevant targets that are involved. Using mass spectrometry, we found that aldolase A (ALDOA) interacts with HIF-1α and increases HIF-1α expression. We then demonstrated that STAT3-ALDOA mediates ATP-HIF-1α signaling and upregulates the HIF-1 target genes adrenomedullin (ADM) and phosphoinositide-dependent kinase-1 (PDK1). Moreover, we show that PI3K/AKT acts upstream of HIF-1α in ATP signaling and contributes to chemoresistance in breast cancer cells. In addition, HIF-1α-knockdown or treatment with direct HIF inhibitors combined with the ATP hydrolase apyrase in MDA-MB-231 cells induced enhanced drug sensitivity in nude BALB/c mice. We then used in vitro spheroid formation assays to demonstrate the significance of ATP-HIF-1α in mediating chemoresistance. Furthermore, considering that indirect HIF inhibitors are effective in clinical cancer therapy, we treated tumor-bearing BALB/c mice with STAT3 and PI3K/AKT inhibitors and found that the dual-targeting strategy sensitized breast cancer to cisplatin. Finally, using breast cancer tissue microarrays, we found that ATP-HIF-1α signaling is associated with cancer progression, poor prognosis, and resistance to chemotherapy. Taken together, we suggest that HIF-1α signaling is vital in ATP-driven chemoresistance and may serve as a potential target for breast cancer therapies.
  37. J Physiol Biochem. 2022 Mar 03.
      The antioxidant role of mitochondrial uncoupling protein 3 (UCP3) is controversial. This work aimed to investigate the effects of UCP3 on the heart of mice housed at thermoneutral temperature, an experimental condition that avoids the effects of thermoregulation on mitochondrial activity and redox homeostasis, preventing the alterations related to these processes from confusing the results caused by the lack of UCP3. WT and KO UCP3 mice were acclimatized at 30 °C for 4 weeks and hearts were used to evaluate metabolic capacity and redox state. Tissue and mitochondrial respiration, the activities of the mitochondrial complexes, and the protein expression of mitochondrial complexes markers furnished information on mitochondrial functionality. The levels of lipid and protein oxidative damage markers, the activity of antioxidant enzymes, the reactive oxygen species levels, and the susceptibility to in vitro Fe-ascorbate-induced oxidative stress furnished information on redox state. UCP3 ablation reduced tissue and mitochondrial respiratory capacities, not affecting the mitochondrial content. In KO UCP3 mice, the mitochondrial complexes activities were lower than in WT without changes in their content. These effects were accompanied by an increase in the level of oxidative stress markers, ROS content, and in vitro susceptibility to oxidative stress, notwithstanding that the activities of antioxidant enzymes were not affected by UCP3 ablation. Such modifications are also associated with enhanced activation/phosphorylation of EIF2α, a marker of integrated stress response and endoplasmic reticulum stress (GRP778 BIP). The lack of UCP3 makes the heart more prone to oxidative insult by reducing oxygen consumption and increasing ROS. Our results demonstrate that UCP3 helps the cell to preserve mitochondrial function by mitigating oxidative stress.
    Keywords:  Calnexin; EIF2α; GRP78 BIP; Heart; Hsp 60; Mitochondrial complexes; Oxidative stress; Oxygen consumption; Thermoneutrality; UCP3
  38. Nat Rev Mol Cell Biol. 2022 Feb 28.
      Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.
  39. PLoS One. 2022 ;17(3): e0264496
      Measurement of oxygen consumption of cultured cells is widely used for diagnosis of mitochondrial diseases, drug testing, biotechnology, and toxicology. Fibroblasts are cultured in monolayers, but physiological measurements are carried out in suspended or attached cells. We address the question whether respiration differs in attached versus suspended cells using multiwell respirometry (Agilent Seahorse XF24) and high-resolution respirometry (Oroboros O2k), respectively. Respiration of human dermal fibroblasts measured in culture medium was baseline-corrected for residual oxygen consumption and expressed as oxygen flow per cell. No differences were observed between attached and suspended cells in ROUTINE respiration of living cells and LEAK respiration obtained after inhibition of ATP synthase by oligomycin. The electron transfer capacity was higher in the O2k than in the XF24. This could be explained by a limitation to two uncoupler titrations in the XF24 which led to an underestimation compared to multiple titration steps in the O2k. A quantitative evaluation of respiration measured via different platforms revealed that short-term suspension of fibroblasts did not affect respiratory activity and coupling control. Evaluation of results obtained by different platforms provides a test for reproducibility beyond repeatability. Repeatability and reproducibility are required for building a validated respirometric database.
  40. Mol Cell. 2022 Mar 03. pii: S1097-2765(22)00160-5. [Epub ahead of print]82(5): 882-883
      By comparing the structures of Bax and Bak megapores, Cosentino et al. (2022) reveal new insights suggesting the two pro-apoptotic proteins co-assemble into structures that release DNA from mitochondria and thereby trigger inflammation.
  41. Biochem J. 2022 Mar 18. 479(5): 583-607
      For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
    Keywords:  cancer metabolism; diabetes; immunometabolism
  42. EMBO J. 2022 Mar 01. e109463
      In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.
    Keywords:  Acly; bone marrow regeneration; hematopoietic stem cells; mitochondrial metabolism
  43. bioRxiv. 2022 Feb 22. pii: 2022.02.19.481089. [Epub ahead of print]
      Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.One-Sentence Summary: Covid-19 is associated with targeted inhibition of mitochondrial gene transcription.