bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021–11–28
47 papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. J Mol Biol. 2021 Nov 19. pii: S0022-2836(21)00598-2. [Epub ahead of print] 167361
      MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved. To investigate the metabolic pathways that are regulated by miR-101-3p, we performed transcriptome and functional analyses of osteosarcoma cells transfected with miR-101-3p. We found that miR-101-3p downregulates multiple mitochondrial processes, including oxidative phosphorylation, pyruvate metabolism, the citric acid cycle and phospholipid metabolism. We also found that miR-101-3p transfection disrupts the transcription of mitochondrial DNA (mtDNA) via the downregulation of the mitochondrial transcription initiation complex proteins TFB2M and Mic60. These alterations in transcript expression disrupt mitochondrial function, with significant decreases in both basal (54%) and maximal (67%) mitochondrial respiration rates. Native gel electrophoresis revealed that this diminished respiratory capacity was associated with reduced steady-state levels of mature succinate dehydrogenase (complex II), with a corresponding reduction of complex II enzymatic activity. Furthermore, miR-101-3p transfection reduced the expression of the SDHB subunit, with a concomitant disruption of the assembly of the SDHC subunit into mature complex II. Overall, we describe a new role for miR-101-3p as a modulator of mitochondrial metabolism via its regulation of multiple mitochondrial processes, including mtDNA transcription and complex II biogenesis.
    Keywords:  MicroRNA-101; cancer metabolism; complex II biogenesis; mtDNA transcription; oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.jmb.2021.167361
  2. Antioxidants (Basel). 2021 Nov 19. pii: 1838. [Epub ahead of print]10(11):
      Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells' progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
    Keywords:  ROS signaling; distant colonization; metastasis; mitochondrial redox metabolism; tumor development
    DOI:  https://doi.org/10.3390/antiox10111838
  3. Cancer Lett. 2021 Nov 20. pii: S0304-3835(21)00591-7. [Epub ahead of print]
      Cancer cells display metabolic alterations to meet the bioenergetic demands for their high proliferation rates. Succinate is a central metabolite of the tricarboxylic acid (TCA) cycle, but was also shown to act as an oncometabolite and to specifically activate the succinate receptor 1 (SUCNR1), which is expressed in several types of cancer. However, functional studies focusing on the connection between SUCNR1 and cancer cell metabolism are still lacking. In the present study, we analyzed the role of SUCNR1 for cancer cell metabolism and survival applying different signal transduction, metabolic and imaging analyses. We chose a gastric, a lung and a pancreatic cancer cell line for which our data revealed functional expression of SUCNR1. Further, presence of glutamine (Gln) caused high respiratory rates and elevated expression of SUCNR1. Knockdown of SUCNR1 resulted in a significant increase of mitochondrial respiration and superoxide production accompanied by an increase in TCA cycle throughput and a reduction of cancer cell survival in the analyzed cancer cell lines. Combination of SUCNR1 knockdown and treatment with the chemotherapeutics cisplatin and gemcitabine further increased cancer cell death. In summary, our data implicates that SUCNR1 is crucial for Gln-addicted cancer cells by limiting TCA cycle throughput, mitochondrial respiration and the production of reactive oxygen species, highlighting its potential as a pharmacological target for cancer treatment.
    Keywords:  Cancer metabolism; GPR91; Glutaminolysis; Metabolite-sensing GPCR; SUCNR1
    DOI:  https://doi.org/10.1016/j.canlet.2021.11.024
  4. J Biol Chem. 2021 Nov 19. pii: S0021-9258(21)01244-8. [Epub ahead of print] 101435
      The dual roles of H2S as an endogenously synthesized respiratory substrate and as a toxin, raise questions as to how it is cleared when the electron transport chain is inhibited. Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in the mitochondrial H2S oxidation pathway, using CoQ as an electron acceptor, and connects to the electron transport chain at the level of complex III. We have discovered that at high H2S concentrations, which are known to inhibit complex IV, a new redox cycle is established between SQOR and complex II, operating in reverse. Under these conditions, the purine nucleotide cycle and the malate aspartate shuttle furnish fumarate, which supports complex II reversal and leads to succinate accumulation. Complex II knockdown in colonocytes decreases the efficiency of H2S clearance while targeted knockout of complex II in intestinal epithelial cells significantly decreases the levels of thiosulfate, a biomarker of H2S oxidation, to approximately one third of the values seen in serum and urine samples from control mice. These data establish the physiological relevance of this newly discovered redox circuitry between SQOR and complex II for prioritizing H2S oxidation and reveal the quantitatively significant contribution of intestinal epithelial cells to systemic H2S metabolism.
    Keywords:  SDHA; coenzyme Q; complex II; electron transport chain; fumarate; hydrogen sulfide
    DOI:  https://doi.org/10.1016/j.jbc.2021.101435
  5. PLoS One. 2021 ;16(11): e0260400
      Heme is an essential cofactor for enzymes of the electron transport chain (ETC) and ATP synthesis in mitochondrial oxidative phosphorylation (OXPHOS). Heme also binds to and destabilizes Bach1, a transcription regulator that controls expression of several groups of genes important for glycolysis, ETC, and metastasis of cancer cells. Heme synthesis can thus affect pathways through which cells generate energy and precursors for anabolism. In addition, increased heme synthesis may trigger oxidative stress. Since many cancers are characterized by a high glycolytic rate regardless of oxygen availability, targeting glycolysis, ETC, and OXPHOS have emerged as a potential therapeutic strategy. Here, we report that enhancing heme synthesis through exogenous supplementation of heme precursor 5-aminolevulinic acid (ALA) suppresses oxidative metabolism as well as glycolysis and significantly reduces proliferation of both ovarian and breast cancer cells. ALA supplementation also destabilizes Bach1 and inhibits migration of both cell types. Our data indicate that the underlying mechanisms differ in ovarian and breast cancer cells, but involve destabilization of Bach1, AMPK activation, and induction of oxidative stress. In addition, there appears to be an inverse correlation between the activity of oxidative metabolism and ALA sensitivity. Promoting heme synthesis by ALA supplementation may thus represent a promising new anti-cancer strategy, particularly in cancers that are sensitive to altered redox signaling, or in combination with strategies that target the antioxidant systems or metabolic weaknesses of cancer cells.
    DOI:  https://doi.org/10.1371/journal.pone.0260400
  6. Biomedicines. 2021 Nov 11. pii: 1664. [Epub ahead of print]9(11):
      Metabolic reprogramming is a hallmark of cancer cells required to ensure high energy needs and the maintenance of redox balance. A relevant metabolic change of cancer cell bioenergetics is the increase in glutamine metabolism. Hepatocellular carcinoma (HCC), one of the most lethal cancer and which requires the continuous development of new therapeutic strategies, shows an up-regulation of human glutamate dehydrogenase 1 (hGDH1). GDH1 function may be relevant in cancer cells (or HCC) to drive the glutamine catabolism from L-glutamate towards the synthesis of α-ketoglutarate (α-KG), thus supplying key tricarboxylic acid cycle (TCA cycle) metabolites. Here, the effects of hGLUD1 gene silencing (siGLUD1) and GDH1 inhibition were evaluated. Our results demonstrate that siGLUD1 in HepG2 cells induces a significant reduction in cell proliferation (58.8% ± 10.63%), a decrease in BCL2 expression levels, mitochondrial mass (75% ± 5.89%), mitochondrial membrane potential (30% ± 7.06%), and a significant increase in mitochondrial superoxide anion (25% ± 6.55%) compared to control/untreated cells. The inhibition strategy leads us to identify two possible inhibitors of hGDH1: quercetin and Permethylated Anigopreissin A (PAA). These findings suggest that hGDH1 could be a potential candidate target to impair the metabolic reprogramming of HCC cells.
    Keywords:  GLUD1; HCC; Permethylated Anigopreissin A (PAA); apoptosis; hGDH1; inhibition; mitochondrial mass; quercetin; redox homeostasis
    DOI:  https://doi.org/10.3390/biomedicines9111664
  7. J Biol Chem. 2021 Nov 18. pii: S0021-9258(21)01245-X. [Epub ahead of print] 101436
      Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum (ER) inositol trisphosphate receptors (IP3R) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetics needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293, HeLa) with stable knockouts of all three IP3R isoforms (TKO) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels, but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely due to adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.
    Keywords:  IP(3) receptor; TCA cycle; bioenergetics; calcium signaling; glycolysis; mitochondrial calcium uniporter; mitochondrial metabolism
    DOI:  https://doi.org/10.1016/j.jbc.2021.101436
  8. Elife. 2021 Nov 22. pii: e73808. [Epub ahead of print]10
      Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the FLIM measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.
    Keywords:  biochemistry; chemical biology; human; mouse; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.73808
  9. Biomolecules. 2021 Nov 10. pii: 1666. [Epub ahead of print]11(11):
      A better understanding of the metabolic constraints of a tumor may lead to more effective anticancer treatments. Evidence has emerged in recent years shedding light on a crucial aspartate dependency of many tumor types. As a precursor for nucleotide synthesis, aspartate is indispensable for cell proliferation. Moreover, the malate-aspartate shuttle plays a key role in redox balance, and a deficit in aspartate can lead to oxidative stress. It is now recognized that aspartate biosynthesis is largely governed by mitochondrial metabolism, including respiration and glutaminolysis in cancer cells. Therefore, under conditions that suppress mitochondrial metabolism, including mutations, hypoxia, or chemical inhibitors, aspartate can become a limiting factor for tumor growth and cancer cell survival. Notably, aspartate availability has been associated with sensitivity or resistance to various therapeutics that are presently in the clinic or in clinical trials, arguing for a critical need for more effective aspartate-targeting approaches. In this review, we present current knowledge of the metabolic roles of aspartate in cancer cells and describe how cancer cells maintain aspartate levels under different metabolic states. We also highlight several promising aspartate level-modulating agents that are currently under investigation.
    Keywords:  GOT1; alpha-ketoglutarate; asparagine; aspartate; cancer metabolism; glutaminase; hypoxia; mitochondrial DNA mutation; mitochondrial respiration; oxidative phosphorylation
    DOI:  https://doi.org/10.3390/biom11111666
  10. Free Radic Res. 2021 Nov 23. 1-28
      We have previously shown that low-intensity ultrasound (LIUS) can modulate mitochondrial complex I activity and the generation of mitochondrial reactive oxygen species (mROS) in PC12 cells. This study investigated the mechanism of LIUS by comparing its effect on mitochondrial dysfunction by three different pathways. LIUS was shown to reverse the effects of rotenone, a Q-site blocker, on the complex I inhibition, mROS generation, and drop of mitochondrial membrane potential (Δψm). In contrast, common antioxidants, N-acetyl cysteine (NAC) and uric acid (UA), blocked rotenone-induced mROS generation and Δψm drop without recovering the complex I activity, which suggested that Δψm drop is correlated with mROS generation rather than complex I inhibition itself. Ionomycin, an ionophore for Ca2+, and L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathione (GSH) biosynthesis, induced mROS generation and Δψm drop without inhibiting complex I activity via different mechanisms. LIUS showed no effect on ionomycin-induced Δψm drop but showed partial inhibition on the other effects of ionomycin and BSO. These results suggest that LIUS might have redundant mechanisms but acted mainly on the complex I activity thereby modulating mROS and Δψm levels. LIUS appeared to act on the Q-module of complex I because it showed no inhibitory effect on Zn2+, an inhibitor of the proton transporting P-module of complex I. Interestingly, pre-treatment of LIUS for up to an hour in advance blocked the rotenone effect as efficiently as the co-treatment. Further studies are needed to reveal the exact mechanism of LIUS to inhibit complex I activity.
    Keywords:  low-intensity ultrasound (LIUS); mitochondrial complex I; mitochondrial reactive oxygen species (mtROS); molecular mechanism; rotenone
    DOI:  https://doi.org/10.1080/10715762.2021.2010730
  11. Cells. 2021 Oct 28. pii: 2920. [Epub ahead of print]10(11):
      While somatic disruptive mitochondrial DNA (mtDNA) mutations that severely affect the respiratory chain are counter-selected in most human neoplasms, they are the genetic hallmark of indolent oncocytomas, where they appear to contribute to reduce tumorigenic potential. A correlation between mtDNA mutation type and load, and the clinical outcome of a tumor, corroborated by functional studies, is currently lacking. Recurrent familial oncocytomas are extremely rare entities, and they offer the chance to investigate the determinants of oncocytic transformation and the role of both germline and somatic mtDNA mutations in cancer. We here report the first family with Hyperparathyroidism-Jaw Tumor (HPT-JT) syndrome showing the inherited predisposition of four individuals to develop parathyroid oncocytic tumors. MtDNA sequencing revealed a rare ribosomal RNA mutation in the germline of all HPT-JT affected individuals whose pathogenicity was functionally evaluated via cybridization technique, and which was counter-selected in the most aggressive infiltrating carcinoma, but positively selected in adenomas. In all tumors different somatic mutations accumulated on this genetic background, with an inverse clear-cut correlation between the load of pathogenic mtDNA mutations and the indolent behavior of neoplasms, highlighting the importance of the former both as modifiers of cancer fate and as prognostic markers.
    Keywords:  familial oncocytic tumors; hyperparathyroidism-jaw tumor syndrome; mitochondrial DNA mutations; parathyroid cancer; respiratory complexes
    DOI:  https://doi.org/10.3390/cells10112920
  12. iScience. 2021 Nov 19. 24(11): 103366
      Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.
    Keywords:  Cancer; Cancer systems biology; Mathematical biosciences
    DOI:  https://doi.org/10.1016/j.isci.2021.103366
  13. J Vis Exp. 2021 Nov 08.
      Mitochondria are important in the pathophysiology of many neurodegenerative diseases. Changes in mitochondrial volume, mitochondrial membrane potential (MMP), mitochondrial production of reactive oxygen species (ROS), and mitochondrial DNA (mtDNA) copy number are often features of these processes. This report details a novel flow cytometry-based approach to measure multiple mitochondrial parameters in different cell types, including human induced pluripotent stem cells (iPSCs) and iPSC-derived neural and glial cells. This flow-based strategy uses live cells to measure mitochondrial volume, MMP, and ROS levels, as well as fixed cells to estimate components of the mitochondrial respiratory chain (MRC) and mtDNA-associated proteins such as mitochondrial transcription factor A (TFAM). By co-staining with fluorescent reporters, including MitoTracker Green (MTG), tetramethylrhodamine ethyl ester (TMRE), and MitoSox Red, changes in mitochondrial volume, MMP, and mitochondrial ROS can be quantified and related to mitochondrial content. Double staining with antibodies against MRC complex subunits and translocase of outer mitochondrial membrane 20 (TOMM20) permits the assessment of MRC subunit expression. As the amount of TFAM is proportional to mtDNA copy number, the measurement of TFAM per TOMM20 gives an indirect measurement of mtDNA per mitochondrial volume. The entire protocol can be carried out within 2-3 h. Importantly, these protocols allow the measurement of mitochondrial parameters, both at the total level and the specific level per mitochondrial volume, using flow cytometry.
    DOI:  https://doi.org/10.3791/63116
  14. Cell Rep. 2021 Nov 23. pii: S2211-1247(21)01479-0. [Epub ahead of print]37(8): 110000
      In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.
    Keywords:  DNA packaging; STED nanoscopy; mitochondrial gene expression; mtDNA mutations; mtDNA replication
    DOI:  https://doi.org/10.1016/j.celrep.2021.110000
  15. J Proteomics. 2021 Nov 20. pii: S1874-3919(21)00329-8. [Epub ahead of print] 104430
      A role for reversible phosphorylation in regulation of mitochondrial proteins has been neglected for a long time. Particularly, the import machineries that mediate influx of more than 1000 different precursor proteins into the organelle were considered as predominantly constitutively active entities. Only recently, a combination of advanced phosphoproteomic approaches and Phos-tag technology enabled the discovery of several phosphorylation sites at the translocase of the outer membrane TOM and the identification of cellular signalling cascades that allow dynamic adaptation of the protein influx into mitochondria upon changing cellular demands. Here, we present a protocol that allows biochemical and semi-quantitative profiling of intra-mitochondrial protein phosphorylation. We exemplify this with the pyruvate dehydrogenase complex (PDH), which serves as a central metabolic switch in energy metabolism that is based on reversible phosphorylation. Phos-tag technology allows rapid monitoring of the metabolic state via simultaneous detection of phosphorylated and non-phosphorylated species of the PDH core component Pda1. Our protocol can be applied for several further intra-organellar proteins like respiratory chain complexes or protein translocases of the inner membrane. SIGNIFICANCE: Our manuscript describes for the first time how Phos-tag technology can be applied to monitor phosphorylation of intramitochondrial proteins. We exemplify this with the regulation of the pyruvate dehydrogenase complex as central regulatory switch in energy metabolism. We show that our protocol allows a rapid monitoring of the metabolic state of the cell (phosphorylated PDH is inactive while non-phosphorylated PDH is active) and can be applied for rapid profiling of different metabolic conditions as well as for profiling phosphorylation of further intramitochondrial protein (complexes).
    Keywords:  Mitochondria; Protein import; Protein translocation; Signalling; TOM complex
    DOI:  https://doi.org/10.1016/j.jprot.2021.104430
  16. Radiol Oncol. 2021 Nov 19. 55(4): 379-392
       BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in almost all biological pathways. They regulate post-transcriptional gene expression by binding to the 3'untranslated region (3'UTR) of messenger RNAs (mRNAs). MitomiRs are miRNAs of nuclear or mitochondrial origin that are localized in mitochondria and have a crucial role in regulation of mitochondrial function and metabolism. In eukaryotes, mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids, and other bio-macromolecules. They are also the main sites of adenosine triphosphate (ATP) production.
    CONCLUSIONS: In the review, we discuss the role of mitomiRs in mitochondria and introduce currently well studied mitomiRs, their target genes and functions. We also discuss their role in cancer initiation and progression through the regulation of mRNA expression in mitochondria. MitomiRs directly target key molecules such as transporters or enzymes in cell metabolism and regulate several oncogenic signaling pathways. They also play an important role in the Warburg effect, which is vital for cancer cells to maintain their proliferative potential. In addition, we discuss how they indirectly upregulate hexokinase 2 (HK2), an enzyme involved in glucose phosphorylation, and thus may affect energy metabolism in breast cancer cells. In tumor tissues such as breast cancer and head and neck tumors, the expression of one of the mitomiRs (miR-210) correlates with hypoxia gene signatures, suggesting a direct link between mitomiR expression and hypoxia in cancer. The miR-17/92 cluster has been shown to act as a key factor in metabolic reprogramming of tumors by regulating glycolytic and mitochondrial metabolism. This cluster is deregulated in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas, and is particularly overexpressed in several other cancers. Based on the current knowledge, we can conclude that there is a large number of miRNAs present in mitochondria, termed mitomiR, and that they are important regulators of mitochondrial function. Therefore, mitomiRs are important players in the metabolism of cancer cells, which need to be further investigated in order to develop a potential new therapies for cancer.
    Keywords:  cancer; cancer cell metabolism; microRNAs; mitochondria; mitomiR
    DOI:  https://doi.org/10.2478/raon-2021-0042
  17. Cancers (Basel). 2021 Nov 19. pii: 5812. [Epub ahead of print]13(22):
      Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.
    Keywords:  cancer bioenergetics; microtubules; mitochondria dynamics; mitophagy; tunneling nanotubes
    DOI:  https://doi.org/10.3390/cancers13225812
  18. Redox Biol. 2021 Nov 11. pii: S2213-2317(21)00346-3. [Epub ahead of print]48 102186
      When ROS production exceeds the cellular antioxidant capacity, the cell needs to eliminate the defective mitochondria responsible for excessive ROS production. It has been proposed that the removal of these defective mitochondria involves mitophagy, but the mechanism of this regulation remains unclear. Here, we demonstrate that moderate mitochondrial superoxide and hydrogen peroxide production oxidates KEAP1, thus breaking the interaction between this protein and PGAM5, leading to the inhibition of its proteasomal degradation. Accumulated PGAM5 interferes with the processing of the PINK1 in the mitochondria leading to the accumulation of PINK1 on the outer mitochondrial membrane. In turn, PINK1 promotes Parkin recruitment to mitochondria and sensitizes mitochondria for autophagic removal. We also demonstrate that inhibitors of the KEAP1-PGAM5 protein-protein interaction (including CPUY192018) mimic the effect of mitochondrial ROS and sensitize mitophagy machinery, suggesting that these inhibitors could be used as pharmacological regulators of mitophagy. Together, our results show that KEAP1/PGAM5 complex senses mitochondrially generated superoxide/hydrogen peroxide to induce mitophagy.
    Keywords:  Mitophagy; NRF2/KEAP1 pathway; Neurodegenerative diseases; Oxidative stress; PINK1/Parkin pathway
    DOI:  https://doi.org/10.1016/j.redox.2021.102186
  19. J Cell Commun Signal. 2021 Nov 25.
      Mitochondrial dysfunctions play crucial roles in the carcinogenesis of various human cancers. However, the molecular mechanisms leading to mitochondrial dysfunction and thus cancer progression remains largely unclear. TFB1M (mitochondrial transcription factor B1) is a mitochondrial DNA-binding protein that activates the transcription of mitochondrial DNA. Our bioinformatics analysis indicated a significant up-regulation of TFB1M in hepatocellular carcinoma (HCC). Here, we investigated its clinical significance and biological functions in this malignancy. Here, we found that TFB1M was significantly upregulated in HCC cells probably due to decreased miR-130a-3p expression. High TFB1M expression was positively associated with poor patient survival in HCC. TFB1M contributes to HCC growth and metastasis by promoting cell cycle progression, epithelia-mesenchymal transition (EMT), and inhibiting cell apoptosis. Mechanistically, the metabolic switch from oxidative phosphorylation to glycolysis contributed to the promotion of tumor growth and metastasis by TFB1M overexpression in HCC cells. In summary, we demonstrate that TFB1M plays a crucial oncogenic role in HCC progression, indicating TFB1M as a promising prognostic marker and therapeutic target in HCC.
    Keywords:  Aerobic glycolysis; Growth; HCC; Metastasis; TFB1M
    DOI:  https://doi.org/10.1007/s12079-021-00658-8
  20. Acta Biochim Pol. 2021 Nov 26.
      Increasing evidence indicates that cancer stem cells (CSCs) are initiators of the occurrence, development, and recurrence of malignant tumors. Mitochondria are important organelles in eukaryotic cells, not only responsible for converting part of energy released during nutrients oxidation into the energy-yielding molecule adenosine triphosphate (ATP) to fuel the activities of cell, but also play essential roles in processes such as cell apoptosis and cellular proliferation. The mitochondrial-related abnormalities have also been considered to have an important role in the origin and development of tumors. This study aimed at testing the abnormalities in mitochondrial function and energy/metabolism-related phenotypes in thyroid cancer stem cells (TCSCs). TCSCs were isolated and identified from MDA-T32 thyroid carcinoma cell line. The mitochondrial mass and mitochondrial arrangement, amount of mitochondrial DNA (mtDNA), mitochondrial membrane potential (MMP), oxygen/glucose consumption, and intracellular concentrations of reactive oxygen species (ROS) and ATP levels were examined. Perinuclear mitochondrial distribution, low amount of mtDNA and oxygen/glucose consumption, high MMP, and low intracellular ROS and ATP concentrations were observed in TCSCs. Alterations in mitochondrial function and cellular energy metabolism may be used as novel indicators of thyroid cancer.
    DOI:  https://doi.org/10.18388/abp.2020_5370
  21. BMC Genom Data. 2021 Nov 26. 22(1): 52
       BACKGROUND: Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations. Premature aging in PolG mice and their physiology have been examined in depth, but the location, frequency, and diversity of their mtDNA mutations remain understudied. Identifying the locations and spectra of mtDNA mutations in PolG mice can shed light on how selection shapes mtDNA, both within and across organisms.
    RESULTS: Here, we characterized somatic and germline mtDNA mutations in brain and liver tissue of PolG mice to quantify mutation count (number of unique mutations) and frequency (mutation prevalence). Overall, mtDNA mutation count and frequency were the lowest in the D-loop, where an mtDNA origin of replication is located, but otherwise uniform across the mitochondrial genome. Somatic mtDNA mutations have a higher mutation count than germline mutations. However, germline mutations maintain a higher frequency and were also more likely to be silent. Cytosine to thymine mutations characteristic of replication errors were the plurality of basepair changes, and missense C to T mutations primarily resulted in increased protein hydrophobicity. Unlike wild type mice, PolG mice do not appear to show strand asymmetry in mtDNA mutations. Indel mutations had a lower count and frequency than point mutations and tended to be short, frameshift deletions.
    CONCLUSIONS: Our results provide strong evidence that purifying selection plays a major role in the mtDNA of PolG mice. Missense mutations were less likely to be passed down in the germline, and they were less likely to spread to high frequencies. The D-loop appears to have resistance to mutations, either through selection or as a by-product of replication processes. Missense mutations that decrease hydrophobicity also tend to be selected against, reflecting the membrane-bound nature of mtDNA-encoded proteins. The abundance of mutations from polymerase errors compared with reactive oxygen species (ROS) damage supports previous studies suggesting ROS plays a minimal role in exacerbating the PolG phenotype, but our findings on strand asymmetry provide discussion for the role of polymerase errors in wild type organisms. Our results provide further insight on how selection shapes mtDNA mutations and on the aging mechanisms in PolG mice.
    Keywords:  Germline mutations; Mutation spectrum; PolG; Protein hydrophobicity; ROS; mitochondrial theory of aging; mtDNA; mtDNA mutations; mtDNA selection
    DOI:  https://doi.org/10.1186/s12863-021-01005-x
  22. Cell Metab. 2021 Nov 12. pii: S1550-4131(21)00529-5. [Epub ahead of print]
      Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.
    Keywords:  Mitochondria; complexome; copy numbers; disease; half-lives; high-confidence proteome; human cells; protein translocation; respiratory chain; smORFs
    DOI:  https://doi.org/10.1016/j.cmet.2021.11.001
  23. Life Sci. 2021 Nov 23. pii: S0024-3205(21)01161-9. [Epub ahead of print] 120174
       AIMS: FcεRI-dependent activation and degranulation of mast cells (MC) play an important role in allergic diseases. We have previously demonstrated that triphenylphosphonium (TPP)-based antioxidant SkQ1 inhibits mast cell degranulation, but the exact mechanism of this inhibition is still unknown. This study focused on investigating the influence of TPP-based compounds SkQ1 and C12TPP on FcεRI-dependent mitochondrial dysfunction and signaling during MC degranulation.
    MAIN METHODS: MC were sensitized by anti-dinitrophenyl IgE and stimulated by BSA-conjugated dinitrophenyl. The degranulation of MC was estimated by β-hexosaminidase release. The effect of TPP-based compounds on FcεRI-dependent signaling was determined by Western blot analysis for adapter molecule LAT, kinases Syk, PI3K, Erk1/2, and p38. Fluorescent microscopy was used to evaluate mitochondrial parameters such as morphology, membrane potential, reactive oxygen species and ATP level.
    KEY FINDINGS: Pretreatment with TPP-based compounds significantly decreased FcεRI-dependent degranulation of MC. TPP-based compounds also prevented mitochondrial dysfunction (drop in mitochondrial ATP level and mitochondrial fission), and decreased Erk1/2 kinase phosphorylation. Selective Erk1/2 inhibition by U0126 also reduced β-hexosaminidase release and prevented mitochondrial fragmentation during FcεRI-dependent degranulation of MC.
    SIGNIFICANCE: These findings expand the fundamental understanding of the role of mitochondria in the activation of MC. It also contributes to the rationale for the development of mitochondrial-targeted drugs for the treatment of allergic diseases.
    Keywords:  Erk1/2 kinase; FcεRI-dependent activation; Mast cell; Mitochondria; Mitochondrial dysfunction; Triphenylphosphonium cations
    DOI:  https://doi.org/10.1016/j.lfs.2021.120174
  24. Cells. 2021 Nov 03. pii: 3003. [Epub ahead of print]10(11):
      Mitochondria are one of organelles that undergo significant changes associated with senescence. An increase in mitochondrial size is observed in senescent cells, and this increase is ascribed to the accumulation of dysfunctional mitochondria that generate excessive reactive oxygen species (ROS). Such dysfunctional mitochondria are prime targets for ROS-induced damage, which leads to the deterioration of oxidative phosphorylation and increased dependence on glycolysis as an energy source. Based on findings indicating that senescent cells exhibit mitochondrial metabolic alterations, a strategy to induce mitochondrial metabolic reprogramming has been proposed to treat aging and age-related diseases. In this review, we discuss senescence-related mitochondrial changes and consequent mitochondrial metabolic alterations. We assess the significance of mitochondrial metabolic reprogramming for senescence regulation and propose the appropriate control of mitochondrial metabolism to ameliorate senescence. Learning how to regulate mitochondrial metabolism will provide knowledge for the control of aging and age-related pathologies. Further research focusing on mitochondrial metabolic reprogramming will be an important guide for the development of anti-aging therapies, and will provide novel strategies for anti-aging interventions.
    Keywords:  ROS; mitochondria; mitochondrial metabolic reprogramming; senescence amelioration
    DOI:  https://doi.org/10.3390/cells10113003
  25. Cancer Res. 2021 Nov 22. pii: canres.CAN-21-0732-A.2021. [Epub ahead of print]
      PARP inhibitors (PARPi) have activity in homologous recombination (HR) repair-deficient, high-grade serous ovarian cancers (HGSOC). However, even responsive tumors develop PARPi resistance, highlighting the need to delay or prevent the appearance of PARPi resistance. Here we showed that the ALK kinase inhibitor ceritinib synergizes with PARPis by inhibiting complex I of the mitochondrial electron transport chain, which increases production of reactive oxygen species and subsequent induction of oxidative DNA damage that is repaired in a PARP-dependent manner. Additionally, combined treatment with ceritinib and PARPi synergized in HGSOC cell lines irrespective of HR status, and a combination of ceritinib with the PARPi olaparib induced tumor regression more effectively than olaparib alone in HGSOC patient-derived xenograft (PDX) models. Notably, the ceritinib and olaparib combination was most effective in PDX models with preexisting PARPi sensitivity and was well tolerated. These findings unveil suppression of mitochondrial respiration, accumulation of ROS, and subsequent induction of DNA damage as novel effects of ceritinib. They also suggest that the ceritinib and PARPi combination warrants further investigation as a means to enhance PARPi activity in HGSOC, particularly in tumors with preexisting HR defects.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-0732
  26. Trends Cell Biol. 2021 Nov 23. pii: S0962-8924(21)00207-5. [Epub ahead of print]
      Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
    Keywords:  cell signalling; heteroplasmy; metabolic remodelling; mitochondrial disease; mtDNA
    DOI:  https://doi.org/10.1016/j.tcb.2021.10.005
  27. Am J Blood Res. 2021 ;11(5): 534-543
       BACKGROUND: Mitochondrial bioenergetic alterations are commonly observed metabolic adaptation in malignancies including acute myeloid leukemia (AML). Mitochondrial DNA alterations are well known in pediatric AML with possible prognostic significance; however, mitochondrial complex activity and its impact on disease outcome have not been previously explored. The aim of this study was to evaluate the mitochondrial complex II and complex V activity and its prognostic significance in pediatric AML patients.
    METHODS: Consecutive 82 de novo pediatric (≤18 years) patients with AML were included in the study along with age and sex matched controls. Bone marrow mononuclear cells were isolated from baseline bone marrow samples from all patients and controls. DNA, RNA and proteins were extracted and relative expression of mitochondrial biogenesis genes TFAM, POLG, POLRMT were estimated along with mitochondrial DNA copy number. The mitochondrial complex II and V enzymes were immunocaptured and their activity was measured by substrate specific absorbance change by kinetic ELISA. The mitochondrial complex II and V activity was compared with controls and their association with clinico-pathological features and survival outcome were analysed. Complex activity was also correlated with relative expression of biogenesis genes.
    RESULTS: The activity of mitochondrial complex II and V were found to be significantly enhanced (P = 0.010 and P = 0.0013 respectively) in pediatric AML patients compared to controls. The activity of mitochondrial complex II and V showed significant positive correlation with relative gene expression of mitochondrial biogenesis genes TFAM (P = 0.001 and P = 0.016 respectively) and POLG (P = 0.005 and P = 0.006 respectively). Neither of the two complex activities showed any significant association with baseline disease demographics or any clinico-pathological feature. Furthermore, the complex II and V activity did not show any impact on event free survival (P = 0.25 and P = 0.24 respectively) and overall survival (P = 0.14 and P = 0.17 respectively) in our cohort.
    CONCLUSION: The activity of both mitochondrial complex II and V are significantly elevated in bone marrow mononuclear cells of children with AML compared to controls. The enhanced activity may be related to upregulation of mitochondrial biogenesis genes TFAM and POLG. The enhanced activity of either of the complexes did not impact disease biology or survival outcomes in pediatric AML.
    Keywords:  ATP synthase; Acute myeloid leukemia; children; mitochondria; mitochondrial biogenesis; mitochondrial complex activity; outcome; pediatric; succinate dehydrogenase; survival
  28. Mater Horiz. 2021 Feb 01. 8(2): 597-605
      In a tumor, the abnormal cancer cell proliferation results in an insufficient O2 supply, and meanwhile cancer cells consume O2 very fast. The imbalance between a low oxygen supply and overwhelming oxygen consumption results in a low oxygen concentration in solid tumors. Therefore, in order to relieve hypoxia in tumors, it is necessary to not only sustainably generate O2, but also inhibit mitochondrial respiration simultaneously. Here, we found that a single Ti2C(OH)2 nanomaterial not only can sustainably generate O2 but also simultaneously highly inhibits mitochondrial respiration via binding phosphorylation proteins onto the surface in cancer cells. Ce6 was linked onto Ti2C(OH)2, forming Ti2C(OH)2-Ce6. Ti2C(OH)2-Ce6 could highly relieve hypoxia in tumors via the combination of sustainable O2 generation and respiration inhibition, produce enough 1O2 to kill cancer cells via PDT, and also effectively convert the absorbed light energy into thermal energy to kill cancer cell via PTT, thereby highly enhancing the cancer therapy.
    DOI:  https://doi.org/10.1039/d0mh01446j
  29. Nano Lett. 2021 Nov 22.
      Design of biosensors capable of imaging ATP and glutathione (GSH) in mitochondria remains a challenge, despite their importance in elucidating their correlated pathophysiological events. Here, we report a new strategy that uses redox-activatable aptamer sensor design combined with nanoparticle-based targeting capability to achieve spatially controlled, AND-gated imaging of ATP and GSH in mitochondria. The DNA nanodevice was designed by the controlled assembly of the redox-responsive ATP aptamer probe on the nanoparticles and further decorated with mitochondria-targeting signals. We demonstrate that the system allows for mitochondria-specific, correlated imaging of ATP and GSH in living cells and in vivo. Furthermore, because the system can be lighted up only when meeting the "dual keys" (overexpressed ATP and GSH in mitochondria) simultaneously, the DNA nanodevice enables specific imaging of tumors in vivo with improved tumor-to-normal tissue ratio. This work illustrates the potential of the DNA nanodevices in the imaging of mitochondrial multivariate targets.
    Keywords:  ATP; DNA nanodevices; GSH; mitochondria; molecular imaging
    DOI:  https://doi.org/10.1021/acs.nanolett.1c03732
  30. iScience. 2021 Nov 19. 24(11): 103350
      Patients with acute myeloid leukemia (AML) carrying high-risk genetic lesions or high residual disease levels after therapy are particularly exposed to the risk of relapse. Here, we identified the long non-coding RNA CDK6-AS1 able to cluster an AML subgroup with peculiar gene signatures linked to hematopoietic cell differentiation and mitochondrial dynamics. CDK6-AS1 silencing triggered hematopoietic commitment in healthy CD34+ cells, whereas in AML cells the pathological undifferentiated state was rescued. This latter phenomenon derived from RUNX1 transcriptional control, responsible for the stemness of hematopoietic precursors and for the block of differentiation in AML. By CDK6-AS1 silencing in vitro, AML mitochondrial mass decreased with augmented pharmacological sensitivity to mitochondria-targeting drugs. In vivo, the combination of tigecycline and cytarabine reduced leukemia progression in the AML-PDX model with high CDK6-AS1 levels, supporting the concept of a mitochondrial vulnerability. Together, these findings uncover CDK6-AS1 as crucial in myeloid differentiation and mitochondrial mass regulation.
    Keywords:  Cancer; Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2021.103350
  31. Sci Rep. 2021 Nov 23. 11(1): 22755
      Mitochondrial DNA (mtDNA) maintenance is essential to sustain a functionally healthy population of mitochondria within cells. Proper mtDNA replication and distribution within mitochondrial networks are essential to maintain mitochondrial homeostasis. However, the fundamental basis of mtDNA segregation and distribution within mitochondrial networks is still unclear. To address these questions, we developed an algorithm, Mitomate tracker to unravel the global distribution of nucleoids within mitochondria. Using this tool, we decipher the semi-regular spacing of nucleoids across mitochondrial networks. Furthermore, we show that mitochondrial fission actively regulates mtDNA distribution by controlling the distribution of nucleoids within mitochondrial networks. Specifically, we found that primary cells bearing disease-associated mutations in the fission proteins DRP1 and MYH14 show altered nucleoid distribution, and acute enrichment of enlarged nucleoids near the nucleus. Further analysis suggests that the altered nucleoid distribution observed in the fission mutants is the result of both changes in network structure and nucleoid density. Thus, our study provides novel insights into the role of mitochondria fission in nucleoid distribution and the understanding of diseases caused by fission defects.
    DOI:  https://doi.org/10.1038/s41598-021-01987-9
  32. ACS Chem Neurosci. 2021 Nov 23.
      Mitochondrial dysfunction has been indicated in neurodegenerative and other disorders. The mitochondrial complex I (MC-I) of the electron transport chain (ETC) on the inner membrane is the electron entry point of the ETC and is essential for the production of reactive oxygen species. Based on a recently identified β-keto-amide type MC-I modulator from our laboratory, an 18F-labeled positron emission tomography (PET) tracer, 18F-2, was prepared. PET/CT imaging studies demonstrated that 18F-2 exhibited rapid brain uptake without significant wash out during the 60 min scanning time. In addition, the binding of 18F-2 was higher in the regions of the brain stem, cerebellum, and midbrain. The uptake of 18F-2 can be significantly blocked by its parent compound. Collectively, the results strongly suggest successful development of MC-I PET tracers from this chemical scaffold that can be used in future mitochondrial dysfunction studies of the central nervous system.
    Keywords:  Alzheimer’s disease; brain uptake; mitochondrial complex I (MC-I); positron emission tomography (PET); radiotracer
    DOI:  https://doi.org/10.1021/acschemneuro.1c00297
  33. J Neurooncol. 2021 Nov 22.
       PURPOSE: Glioblastoma (GBM) is a rapidly growing tumor in the central nervous system with altered metabolism. Depleting the bioenergetics of tumors with biguanides have been suggested as an effective therapeutic approach for treating GBMs. The purpose of this study was to determine the effects of IM1761065, a novel biguanide with improved pharmacokinetics, on GBM-tumorspheres (TSs).
    METHODS: The biological activities of IM1761065 on GBM-TSs, including their effects on viability, ATP levels, cell cycle, stemness, invasive properties, and transcriptomes were examined. The in vivo efficacy of IM1761065 was tested in a mouse orthotopic xenograft model.
    RESULTS: IM1761065 decreased the viability and ATP levels of GBM-TSs in a dose-dependent manner, and reduced basal and spare respiratory capacity in patient-derived GBM-TS, as measured by the oxygen consumption rate. Sphere formation, expression of stemness-related proteins, and invasive capacity of GBM-TSs were also significantly suppressed by IM1761065. A gene-ontology comparison of IM1761065-treated groups showed that the expression levels of stemness-related, epithelial mesenchymal transition-related, and mitochondrial complex I genes were also significantly downregulated by IM1761065. An orthotopic xenograft mouse model showed decreased bioluminescence in IM1761065-treated cell-injected mice at 5 weeks. IM1761065-treated group showed longer survival than the control group (P = 0.0289, log-rank test).
    CONCLUSION: IM1761065 is a potent inhibitor of oxidative phosphorylation. The inhibitory effect of IM1761065 on the bioenergetics of GBM-TS suggests that this novel compound could be used as a new drug for the treatment of GBM.
    Keywords:  Biguanide; Bioenergetics; Glioblastoma; IM1761065; Tumorsphere
    DOI:  https://doi.org/10.1007/s11060-021-03903-7
  34. Cancer Lett. 2021 Nov 22. pii: S0304-3835(21)00589-9. [Epub ahead of print]
      The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.
    Keywords:  Endoplasmic reticulum stress; Mitochondria; Pro-apoptotic agents; Reactive oxygen species; Ureido-fatty acids
    DOI:  https://doi.org/10.1016/j.canlet.2021.11.022
  35. Methods Mol Biol. 2022 ;2393 597-609
      Creatine kinase (CK) plays an important role in tissue metabolism by providing a buffering mechanism for maintaining a constant supply of adenosine triphosphate (ATP) during metabolic perturbations. Phosphorous-31 magnetic resonance spectroscopy (31P-MRS) employing magnetization transfer techniques is the only noninvasive method for measuring the rate of ATP synthesis via creatine kinase. However, due to the low concentrations of phosphate metabolites, current 31P-MRS methods require long acquisition time to achieve adequate measurement accuracy. In this chapter, we present a new framework of data acquisition and parameter estimation, the 31P magnetic resonance spectroscopic fingerprinting (31P-MRSF) method, for rapid quantification of CK reaction rate constant in the hindlimb of small laboratory animals.
    Keywords:  Creatine kinase; Magnetic resonance fingerprinting; Muscle metabolism; Phosphorous-31 magnetic resonance spectroscopy
    DOI:  https://doi.org/10.1007/978-1-0716-1803-5_31
  36. J Exp Med. 2022 Jan 03. pii: e20202084. [Epub ahead of print]219(1):
      Immune checkpoint inhibitor (ICI) therapy continues to revolutionize melanoma treatment, but only a subset of patients respond. Major efforts are underway to develop minimally invasive predictive assays of ICI response. Using single-cell transcriptomics, we discovered a unique CD8 T cell blood/tumor-shared subpopulation in melanoma patients with high levels of oxidative phosphorylation (OXPHOS), the ectonucleotidases CD38 and CD39, and both exhaustion and cytotoxicity markers. We called this population with high levels of OXPHOS "CD8+ TOXPHOS cells." We validated that higher levels of OXPHOS in tumor- and peripheral blood-derived CD8+ TOXPHOS cells correlated with ICI resistance in melanoma patients. We then developed an ICI therapy response predictive model using a transcriptomic profile of CD8+ TOXPHOS cells. This model is capable of discerning responders from nonresponders using either tumor or peripheral blood CD8 T cells with high accuracy in multiple validation cohorts. In sum, CD8+ TOXPHOS cells represent a critical immune population to assess ICI response with the potential to be a new target to improve outcomes in melanoma patients.
    DOI:  https://doi.org/10.1084/jem.20202084
  37. Cell Death Dis. 2021 Nov 26. 12(12): 1106
      Hypoxic microenvironment is common in solid tumors, particularly in pancreatic ductal adenocarcinoma (PDAC). The Warburg effect is known to facilitate cancer aggressiveness and has long been linked to hypoxia, yet the underlying mechanism remains largely unknown. In this study, we identify that lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene and is essential for the Warburg effect in PDAC. LOXL2 stabilizes hypoxia-inducible factor 1α (HIF1α) from prolyl hydroxylase (PHD)-dependent hydroxylation via hydrogen peroxide generation, thereby facilitating the transcription of multiple glycolytic genes. Therefore, a positive feedback loop exists between LOXL2 and HIF1α that facilitates glycolytic metabolism under hypoxia. Moreover, LOXL2 couples the Warburg effect to tumor growth and metastasis in PDAC. Hijacking glycolysis largely compromises LOXL2-induced oncogenic activities. Collectively, our results identify a hitherto unknown hypoxia-LOXL2-HIF1α axis in regulating the Warburg effect and provide an intriguing drug target for PDAC therapy.
    DOI:  https://doi.org/10.1038/s41419-021-04391-3
  38. Cell Chem Biol. 2021 Nov 18. pii: S2451-9456(21)00478-5. [Epub ahead of print]
      Ferroptosis is an emerging cancer suppression strategy. However, how to select cancer patients for treating with ferroptosis inducers remains challenging. Here, we develop photochemical activation of membrane lipid peroxidation (PALP), which uses targeted lasers to induce localized polyunsaturated fatty acyl (PUFA)-lipid peroxidation for reporting ferroptosis sensitivity in cells and tissues. PALP captured by BODIPY-C11 can be suppressed by lipophilic antioxidants and iron chelation, and is dependent on PUFA-lipid levels. Moreover, we develop PALPv2, for studying lipid peroxidation on selected membranes along the z axis in live cells using two-photon microscopes. Using PALPv1, we detect PUFA-lipids in multiple tissues, and validate a PUFA-phospholipid reduction during muscle aging as previously reported. Patterns of PALPv1 signals across multiple cancer cell types in vitro and in vivo are concordant with their ferroptosis susceptibility and PUFA-phospholipid levels. We envision that PALP will enable rapid stratification of ferroptosis sensitivity in cancer patients and facilitate PUFA-lipid research.
    Keywords:  cancer; ferroptosis sensitivity stratification; imaging; in situ quantitation; lipid peroxidation; polyunsaturated lipid
    DOI:  https://doi.org/10.1016/j.chembiol.2021.11.001
  39. Nanomaterials (Basel). 2021 Oct 28. pii: 2875. [Epub ahead of print]11(11):
      Mitochondria, as the powerhouse of most cells, are not only responsible for the generation of adenosine triphosphate (ATP) but also play a decisive role in the regulation of apoptotic cell death, especially of cancer cells. Safe potential delivery systems which can achieve organelle-targeted therapy are urgently required. In this study, for effective pancreatic cancer therapy, a novel mitochondria-targeted and ROS-triggered drug delivery nanoplatform was developed from the TPP-TK-CPI-613 (TTCI) prodrug, in which the ROS-cleave thioketal functions as a linker connecting mitochondrial targeting ligand TPP and anti-mitochondrial metabolism agent CPI-613. DSPE-PEG2000 was added as an assistant component to increase accumulation in the tumor via the EPR effect. This new nanoplatform showed effective mitochondrial targeting, ROS-cleaving capability, and robust therapeutic performances. With active mitochondrial targeting, the formulated nanoparticles (TTCI NPs) demonstrate much higher accumulation in mitochondria, facilitating the targeted delivery of CPI-613 to its acting site. The results of in vitro antitumor activity and cell apoptosis revealed that the IC50 values of TTCI NPs in three types of pancreatic cancer cells were around 20~30 µM, which was far lower than those of CPI-613 (200 µM); 50 µM TTCI NPs showed an increase in apoptosis of up to 97.3% in BxPC3 cells. Therefore, this mitochondria-targeted prodrug nanoparticle platform provides a potential strategy for developing safe, targeting and efficient drug delivery systems for pancreatic cancer therapy.
    Keywords:  CPI-613; ROS-responsive; drug delivery; mitochondria-targeting; nanoparticles; pancreatic cancer therapy
    DOI:  https://doi.org/10.3390/nano11112875
  40. Nat Immunol. 2021 Nov 22.
      Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.
    DOI:  https://doi.org/10.1038/s41590-021-01065-2
  41. FEBS J. 2021 Nov 24.
      The 4th International meeting Metabolism and Cancer initially programed to take place in Bordeaux (France) was held virtually on May 27-29, 2021. The three-day event was followed by around 600 participants daily from 47 countries around the world. The meeting hosted 21 speakers including selected talks and a keynote lecture from the Nobel prize winner Sir Peter J. Ratcliffe (Oxford, United Kingdom). Presentations and discussions were divided in four scientific sessions: (1) Redox and energy metabolism; (2) Redox and hypoxia; (3) Metabolic profiling and epigenetic control; and (4) Signaling, fueling and metabolism in cancer and a general public session on cancer and nutrition. This report summarizes the presentations and outcomes of the 4th annual Metabolism and Cancer symposium. We provide here a summary of the scientific highlights of this exciting meeting.
    Keywords:  Cancer; Epigenetics; Hypoxia; Metabolism; Mitochondria; Redox; Signaling
    DOI:  https://doi.org/10.1111/febs.16295
  42. iScience. 2021 Nov 19. 24(11): 103354
      The Krebs cycle enzyme fumarase, which has been identified as a tumor suppressor, is involved in the deoxyribonucleic acid (DNA) damage response (DDR) in human, yeast, and bacterial cells. We have found that the overexpression of the cysteine desulfurase Nfs1p restores DNA repair in fumarase-deficient yeast cells. Nfs1p accumulates inactivating post-translational modifications in yeast cells lacking fumarase under conditions of DNA damage. Our model is that in addition to metabolic signaling of the DDR in the nucleus, fumarase affects the DDR by protecting the desulfurase Nfs1p in mitochondria from modification and inactivation. Fumarase performs this protection by directly binding to Nfs1p in mitochondria and enabling, the maintenance, via metabolism, of a non-oxidizing environment in mitochondria. Nfs1p is required for the formation of Fe-S clusters, which are essential cofactors for DNA repair enzymes. Thus, we propose that the overexpression of Nfs1p overcomes the lack of fumarase by enhancing the activity of DNA repair enzymes.
    Keywords:  Biochemistry; Biological sciences; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2021.103354
  43. Exp Cell Res. 2021 Nov 18. pii: S0014-4827(21)00490-0. [Epub ahead of print]409(2): 112934
      Hematopoietic stem cells (HSCs) are sensitive to ionizing radiation (IR) damage, and its injury is the primary cause of bone marrow (BM) hematopoietic failure and even death after exposure to a certain dose of IR. However, the underlying mechanisms remain incompletely understood. Here we show that mitochondrial oxidative damage, which is characterized by mitochondrial reactive oxygen species overproduction, mitochondrial membrane potential reduction and mitochondrial permeability transition pore opening, is rapidly induced in both human and mouse HSCs and directly accelerates HSC apoptosis after IR exposure. Mechanistically, 5-lipoxygenase (5-LOX) is induced by IR exposure and contributes to IR-induced mitochondrial oxidative damage through inducing lipid peroxidation. Intriguingly, a natural antioxidant, caffeic acid (CA), can attenuate IR-induced HSC apoptosis through suppressing 5-LOX-mediated mitochondrial oxidative damage, thus protecting against BM hematopoietic failure after IR exposure. These findings uncover a critical role for mitochondria in IR-induced HSC injury and highlight the therapeutic potential of CA in BM hematopoietic failure induced by IR.
    Keywords:  Caffeic acid; Hematopoietic stem cell; Irradiation; Mitochondrial damage; ROS
    DOI:  https://doi.org/10.1016/j.yexcr.2021.112934
  44. Nat Commun. 2021 Nov 26. 12(1): 6936
      Chemoresistance posts a major hurdle for treatment of acute leukemia. There is increasing evidence that prolonged and intensive chemotherapy often fails to eradicate leukemic stem cells, which are protected by the bone marrow niche and can induce relapse. Thus, new therapeutic approaches to overcome chemoresistance are urgently needed. By conducting an ex vivo small molecule screen, here we have identified Quinacrine (QC) as a sensitizer for Cytarabine (AraC) in treating acute lymphoblastic leukemia (ALL). We show that QC enhances AraC-mediated killing of ALL cells, and subsequently abrogates AraC resistance both in vitro and in an ALL-xenograft model. However, while combo AraC+QC treatment prolongs the survival of primary transplanted recipients, the combination exhibits limited efficacy in secondary transplanted recipients, consistent with the survival of niche-protected leukemia stem cells. Introduction of Cdc42 Activity Specific Inhibitor, CASIN, enhances the eradication of ALL leukemia stem cells by AraC+QC and prolongs the survival of both primary and secondary transplanted recipients without affecting normal long-term human hematopoiesis. Together, our findings identify a small-molecule regimen that sensitizes AraC-mediated leukemia eradication and provide a potential therapeutic approach for better ALL treatment.
    DOI:  https://doi.org/10.1038/s41467-021-27300-w
  45. Nat Commun. 2021 Nov 25. 12(1): 6859
      The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
    DOI:  https://doi.org/10.1038/s41467-021-27266-9
  46. Micron. 2021 Nov 12. pii: S0968-4328(21)00172-4. [Epub ahead of print]153 103181
      Iron-Sulfur (Fe-S) clusters are essential for life, as they are widely utilized in nearly every biochemical pathway. When bound to proteins, Fe-S clusters assist in catalysis, signal recognition, and energy transfer events, as well as additional cellular pathways including cellular respiration and DNA repair and replication. In Eukaryotes, Fe-S clusters are produced through coordinated activity by mitochondrial Iron-Sulfur Cluster (ISC) assembly pathway proteins through direct assembly, or through the production of the activated sulfur substrate used by the Cytosolic Iron-Sulfur Cluster Assembly (CIA) pathway. In the mitochondria, Fe-S cluster assembly is accomplished through the coordinated activity of the ISC pathway protein complex composed of a cysteine desulfurase, a scaffold protein, the accessory ISD11 protein, the acyl carrier protein, frataxin, and a ferredoxin; downstream events that accomplish Fe-S cluster transfer and delivery are driven by additional chaperone/delivery proteins that interact with the ISC assembly complex. Deficiency in human production or activity of Fe-S cluster containing proteins is often detrimental to cell and organism viability. Here we summarize what is known about the structure and functional activities of the proteins involved in the early steps of assembling [2Fe-2S] clusters before they are transferred to proteins devoted to their delivery. Our goal is to provide a comprehensive overview of how the ISC assembly apparatus proteins interact to make the Fe-S cluster which can be delivered to proteins downstream to the assembly event.
    Keywords:  Acyl carrier protein; Cysteine desulfurase; Ferredoxin; Frataxin; Friedrich’s ataxia; Iron-sulfur clusters; Scaffold
    DOI:  https://doi.org/10.1016/j.micron.2021.103181
  47. Anticancer Agents Med Chem. 2021 Nov 25.
      Apoptosis is a programmed cell death that occurs due to the production of several catabolic enzymes. During this process, several morphological and biochemical changes occur in mitochondria, the main organelle in the cell that participates in apoptosis and control apoptotic pathways. During apoptosis, cytochrome c is released from mitochondria, and different proteins activate caspase cascades that carry out the cell towards the death process. Apoptosis mainly occurs due to p53 protein that allows the abnormal cells to proliferate. Bcl-2 and Bcl-xl are two anti-apoptotic members of the protein family that prevents apoptosis. The membrane potential of mitochondria decreases by opening of the permeability transition pore (PTP). These PTP are formed by the binding of Bax with adenine nucleotide translocator (ANT) and cause depolarization in the membrane. The depolarization releases apoptogenic factors (cytochrome c) that result in the loss of oxidative phosphorylation. Knockdown in lactate dehydrogenase (LDH) is the cause of the decrease in mitochondrial membrane potential elevating the levels of reactive oxygen species (ROS) and Bax. Consequently, causing an increase in the release of cytochrome c that ultimately leads to apoptosis. In this review, we have summarized the combined effect of mitochondrial membrane potential and LDH enzyme that triggers apoptosis in cells and their role in the mechanism of apoptosis.
    Keywords:  Apoptosis; cell death; depolarization; mitochondrial membrane potential; oxidative phosphorylation; proteolytic enzymes
    DOI:  https://doi.org/10.2174/1871520621666211126090906