bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021‒09‒05
43 papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Life Sci Alliance. 2021 Nov;pii: e202101034. [Epub ahead of print]4(11):
      Mitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism. Mice ubiquitously expressing very high TFAM levels develop pathology leading to deficient oxidative phosphorylation (OXPHOS) and early postnatal lethality. The TFAM-to-mtDNA ratio varies widely between tissues in these mice and is very high in skeletal muscle leading to strong repression of mtDNA expression and OXPHOS deficiency. In the heart, increased mtDNA copy number results in a near normal TFAM-to-mtDNA ratio and maintained OXPHOS capacity. In liver, induction of LONP1 protease and mitochondrial RNA polymerase expression counteracts the silencing effect of high TFAM levels. TFAM thus acts as a general repressor of mtDNA expression and this effect can be counterbalanced by tissue-specific expression of regulatory factors.
    DOI:  https://doi.org/10.26508/lsa.202101034
  2. J Bioenerg Biomembr. 2021 Sep 01.
      The poor outcomes in acute myeloid leukemia (AML) necessitate new treatments. In this work, we identified that anisomycin is a potential selective anti-AML candidate, particularly for those with FLT3-ITD mutation. We found that anisomycin potently inhibited proliferation and induced apoptosis in multiple AML cell lines. Anisomycin was effective in targeting progenitor cells isolated from all tested pediatric AML patients, while sparing normal counterparts. Using AML xenograft mouse models, anisomycin exhibited inhibitory effect on tumor growth throughout the whole duration without causing toxicity in mice. The combination of anisomycin with standard of care drugs is synergistic and selective in AML cell culture system and mouse model. In addition, FLT3-ITD cells were more sensitive to anisomycin than FLT3 WT cells. Mechanistic studies revealed that anisomycin acted on AML in a p38-independent manner. We found that anisomycin decreased mitochondrial respiration by disrupting complex I activity, leading to intracellular oxidative stress. AML ρ0 cells that lack of mitochondrial respiration exhibited resistance to anisomycin. Finally, we showed that mitochondrial biogenesis contributes to differential sensitivity of FLT3-ITD and FLT3 WT cells to anisomycin. Our work is the first to systematically demonstrate that anisomycin is a useful addition to the treatment armamentarium for AML. Our findings highlight the therapeutic value of mitochondrial respiration inhibition in AML patients harboring FLT3-ITD mutation.
    Keywords:  Anisomycin; Mitochondrial respiration; Pediatric AML; Synergy
    DOI:  https://doi.org/10.1007/s10863-021-09918-z
  3. J Vis Exp. 2021 Aug 16.
      The mitochondrial electron transfer complex (ETC) profile is modified in the heart tissue of the offspring born to an exercised sow. The hypothesis proposed and tested was that a regular maternal exercise of a sow during pregnancy would increase the mitochondrial efficiency of offspring heart bioenergetics. This hypothesis was tested by isolating mitochondria using a mild-isolation procedure to assess mitochondrial ETC and supercomplex profiles. The procedure described here allowed for the processing of previously frozen archived heart tissues and eliminated the necessity of fresh mitochondria preparation for the assessment of mitochondrial ETC complexes, supercomplexes, and ETC complex activity profiles. This protocol describes the optimal ETC protein complex measurement in multiplexed antibody-based immunoblotting and super complex assessment using blue-native gel electrophoresis.
    DOI:  https://doi.org/10.3791/62809
  4. Mol Ther. 2021 Aug 31. pii: S1525-0016(21)00454-8. [Epub ahead of print]
      We and others have shown that MPM (micropeptide in mitochondria) regulates myogenic differentiation and muscle development. However, the roles of MPM in cancer development remain unknown. Here we revealed that MPM was significantly down-regulated in human hepatocellular carcinoma (HCC) tissues, and its decrease was associated with increased metastasis potential and HCC recurrence. Both in vitro and in vivo orthotopic xenograft models disclosed that the in vitro migration/invasion and in vivo liver/lung metastasis of hepatoma cells were repressed by restoring MPM expression and increased by silencing MPM. Mechanism investigations revealed that MPM interacted with NDUFA7. The mitochondrial complex I activity was inhibited by overexpressing MPM and enhanced by siMPM, and this effect of siMPM was attenuated by knocking down NDUFA7. Consistently, the NAD+/NADH ratio, which was regulated by complex I, was reduced by MPM but increased by siMPM. And treatment with NAD+ precursor nicotinamide abrogated the inhibitory effect of MPM on hepatoma cell migration. Further investigations showed that miR-17-5p bound to MPM and inhibited MPM expression. MiR-17-5p up-regulation was associated with MPM down-regulation in HCC tissues. These findings indicate that decrease of MPM expression may promote hepatoma metastasis by increasing mitochondrial complex I activity and NAD+/NADH ratio.
    DOI:  https://doi.org/10.1016/j.ymthe.2021.08.032
  5. Bio Protoc. 2021 Aug 05. 11(15): e4110
      Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate (ATP) production in eukaryotic cells. To investigate their functions and structures, large-scale purification of intact mitoribosomes from mitochondria-rich animal tissues or HEK cells have been developed. However, the fast purification of mitoribosomes anchored to the mitochondrial inner membrane in complex with the Oxa1L translocase remains particularly challenging. Herein, we present a protocol recently developed and modified in our lab that provides details for the efficient isolation of intact mitoribosomes with its translocase Oxa1L. We combined the cell culture of PDE12-/- or wild-type HEK293 cell lines with the isolation of mitochondria and the purification steps used for the biochemical and structural studies of mitoribosomes and Oxa1L. Graphic abstract: Schematic procedure for the purification of mitoribosomes from HEK cells. The protocol described herein includes two main sections: 1) isolation of mitochondria from HEK cells; and 2) purification of mitoribosome-Oxa1L from mitochondria. RB: Resuspension Buffer (see Recipes) (Created with BioRender.com).
    Keywords:  Biochemistry; Cryo-EM; Mitochondria; Mitoribosome; Oxa1L; Ribosome purification
    DOI:  https://doi.org/10.21769/BioProtoc.4110
  6. JACS Au. 2021 Apr 26. 1(4): 439-449
      Mitochondrial structure and organization is integral to maintaining mitochondrial homeostasis and an emerging biological target in aging, inflammation, neurodegeneration, and cancer. The study of mitochondrial structure and its functional implications remains challenging in part because of the lack of available tools for direct engagement, particularly in a disease setting. Here, we report a gold-based approach to perturb mitochondrial structure in cancer cells. Specifically, the design and synthesis of a series of tricoordinate Au(I) complexes with systematic modifications to group 15 nonmetallic ligands establish structure-activity relationships (SAR) to identify physiologically relevant tools for mitochondrial perturbation. The optimized compound, AuTri-9 selectively disrupts breast cancer mitochondrial structure rapidly as observed by transmission electron microscopy with attendant effects on fusion and fission proteins. This phenomenon triggers severe depolarization of the mitochondrial membrane in cancer cells. The high in vivo tolerability of AuTri-9 in mice demonstrates its preclinical utility. This work provides a basis for rational design of gold-based agents to control mitochondrial structure and dynamics.
    DOI:  https://doi.org/10.1021/jacsau.1c00051
  7. Elife. 2021 Aug 31. pii: e69312. [Epub ahead of print]10
      Ca2+ entry into mitochondria is through the mitochondrial calcium uniporter complex (MCUcx), a Ca2+-selective channel composed of five subunit types. Two MCUcx subunits (MCU and EMRE) span the inner mitochondrial membrane, while three Ca2+-regulatory subunits (MICU1, MICU2 and MICU3) reside in the intermembrane space. Here we provide rigorous analysis of Ca2+ and Na+ fluxes via MCUcx in intact isolated mitochondria to understand the function of MICU subunits. We also perform direct patch clamp recordings of macroscopic and single MCUcx currents to gain further mechanistic insight. This comprehensive analysis shows that the MCUcx pore, composed of the EMRE and MCU subunits, is not occluded nor plugged by MICUs during the absence or presence of extramitochondrial Ca2+ as has been widely reported. Instead, MICUs potentiate activity of MCUcx as extramitochondrial Ca2+ is elevated. MICUs achieve this by modifying the gating properties of MCUcx allowing it to spend more time in the open state.
    Keywords:  molecular biophysics; mouse; structural biology
    DOI:  https://doi.org/10.7554/eLife.69312
  8. Nano Lett. 2021 Sep 02.
      Selective amplification of reactive oxygen species (ROS) generation in tumor cells has been recognized as an effective strategy for cancer therapy. However, an abnormal tumor metabolism, especially the mitochondrial glutaminolysis, could promote tumor cells to generate high levels of antioxidants (e.g., glutathione) to evade ROS-induced damage. Here, we developed a tumor-targeted nanoparticle (NP) platform for effective breast cancer therapy via combining inhibition of mitochondrial glutaminolysis and chemodynamic therapy (CDT). This NP platform is composed of bovine serum albumin (BSA), ferrocene, and purpurin. After surface decoration with a tumor-targeting aptamer and then intravenous administration, this NP platform could target tumor cells and release ferrocene to catalyze hydrogen peroxide (H2O2) into the hydroxyl radical (·OH) for CDT. More importantly, purpurin could inhibit mitochondrial glutaminolysis to concurrently prevent the nutrient supply for tumor cells and disrupt intracellular redox homeostasis for enhanced CDT, ultimately leading to the combinational inhibition of tumor growth.
    Keywords:  Reactive oxygen species; chemodynamic therapy; combination cancer therapy; glutaminolysis; nanoparticle
    DOI:  https://doi.org/10.1021/acs.nanolett.1c02073
  9. Cancer Sci. 2021 Aug 31.
      Ovarian clear cell carcinoma (CCC) exhibits an association with endometriosis, resistance to oxidative stress, and poor prognosis owing to its resistance to conventional platinum-based chemotherapy. A greater understanding of the molecular characteristics and pathogenesis of ovarian cancer subtypes may facilitate the development of targeted therapeutic strategies, though the mechanism of drug resistance in ovarian CCC has yet to be determined. In this study, we assessed exome sequencing data to identify new therapeutic targets of mitochondrial function in ovarian CCC because of the central role of mitochondria in redox homeostasis. Copy number analyses revealed that chromosome 17q21-24 (chr.17q21-24) amplification was associated with recurrence in ovarian CCC. Cell viability assays identified an association between cisplatin resistance and chr.17q21-24 amplification, and mitochondrion-related genes were enriched in patients with chr.17q21-24 amplification. Patients with high expression of pyruvate dehydrogenase kinase 2 (PDK2) had a worse prognosis than those with low PDK2 expression. Furthermore, inhibition of PDK2 synergistically enhanced cisplatin sensitivity by activating the electron transport chain and by increasing the production of mitochondrial reactive oxygen species. Mouse xenograft models showed that inhibition of PDK2 with cisplatin inhibited tumor growth. This evidence suggests that targeting mitochondrial metabolism and redox homeostasis is an attractive therapeutic strategy for improving drug sensitivity in ovarian CCC.
    Keywords:  chemoresistance; clear cell carcinoma; mitochondria; ovarian cancer; pyruvate dehydrogenase kinase isoform 2 (PDK2)
    DOI:  https://doi.org/10.1111/cas.15125
  10. Development. 2021 Sep 02. pii: dev.199477. [Epub ahead of print]
      The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that STAT3 import inside mitochondria requires Y705 phosphorylation by Jak, while its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: while the Y705 mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect the import in the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription seems independent from STAT3 binding to STAT3 responsive elements. Finally, loss of function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish.
    Keywords:  ESC; STAT3; mitochondria; transcription; zebrafish
    DOI:  https://doi.org/10.1242/dev.199477
  11. Free Radic Biol Med. 2021 Aug 26. pii: S0891-5849(21)00692-4. [Epub ahead of print]175 18-27
      Iron is an essential nutrient that forms cofactors required for the activity of hundreds of cellular proteins. However, iron can be toxic and must be precisely managed. Poly r(C) binding protein 1 (PCBP1) is an essential, multifunctional protein that binds both iron and nucleic acids, regulating the fate of both. As an iron chaperone, PCBP1 binds cytosolic iron and delivers it to iron enzymes for activation and to ferritin for storage. Mice deleted for PCBP1 in the liver exhibit dysregulated iron balance, with lower levels of liver iron stores and iron enzymes, but higher levels of chemically-reactive iron. Unchaperoned iron triggers the formation of reactive oxygen species, leading to lipid peroxidation and ferroptotic cell death. Hepatic PCBP1 deletion produces chronic liver disease in mice, with steatosis, triglyceride accumulation, and elevated plasma ALT levels. Human and mouse models of fatty liver disease are associated with mitochondrial dysfunction. Here we show that, although deletion of PCBP1 does not affect mitochondrial iron balance, it does affect mitochondrial function. PCBP1 deletion affected mitochondrial morphology and reduced levels of respiratory complexes II and IV, oxygen consumption, and ATP production. Depletion of mitochondrial lipids cardiolipin and coenzyme Q, along with reduction of mitochondrial oxygen consumption, were the first manifestations of mitochondrial dysfunction. Although dietary supplementation with vitamin E ameliorated the liver disease in mice with hepatic PCBP1 deletion, supplementation with coenzyme Q was required to fully restore mitochondrial lipids and function. In conclusion, our studies indicate that mitochondrial function can be restored in livers subjected to ongoing oxidative damage from unchaperoned iron by supplementation with coenzyme Q, a mitochondrial lipid essential for respiration that also functions as a lipophilic radical-trapping agent.
    Keywords:  Cardiolipin; Coenzyme Q; Ferroptosis; NAFLD; NASH; Oxidative stress; PCBP1; Steatosis
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.08.232
  12. Oncol Lett. 2021 Oct;22(4): 691
      Colorectal cancer is a common malignant tumor of the gastrointestinal tract. Currently, the main treatment is surgical resection, which can be combined with other treatments. However, treatment efficacy is poor, and colorectal cancer is prone to relapse and metastasis; thus, identifying an effective anti-cancer drug is an urgent requirement. The present study examined the antagonistic effect of penicillin on cultured colorectal cancer cells and the related mechanism. A MTT assay was used to assess the growth of the colorectal cancer cells treated with penicillin and to determine the optimal drug concentration. The wound healing and Transwell invasion assays were performed to investigate the effect of penicillin on the migration and invasion of the colorectal cancer cells. Live cell mitochondrial energy metabolism analysis was performed to detect changes in mitochondrial energy metabolism of the colorectal cancer cells, while western blot analysis was used to measure the expression of cytochrome c and autophagy-related protein, LC3. RFP-GFP-LC3 lentivirus was used to detect autophagic flux, and autophagosomes were observed using a transmission electron microscope, while flow cytometry was used to analyze the effect of penicillin on cell cycle progression and apoptosis of the colorectal cancer cells. After penicillin treatment, the growth, migration and invasion ability of the colorectal cancer cells were inhibited. The mitochondrial energy metabolism of the cell was impaired, and the basic respiratory capacity, maximum respiratory capacity, respiratory potential, and ATP production were all reduced. The protein expression levels of the autophagy-related proteins, LC3-II/LC3-I increased in a dose- and time-dependent manner. In addition, autophagy flux and the number of autophagosomes increased, and mitochondrial structural damage was observed. The cell cycle was arrested at the G1 phase, the number of early apoptotic cells increased and the protein expression level of cleaved caspase-3 increased, while penicillin-induced apoptosis was blocked by the autophagy inhibitor 3-MA. In conclusion, penicillin disrupted mitochondrial function and energy metabolism in the colorectal cancer cells, which resulted in the induction of autophagic apoptosis and ultimately the inhibition of cancer cell growth and metastasis.
    Keywords:  apoptosis; autophagy; colorectal cancer; mitochondrial; penicillin
    DOI:  https://doi.org/10.3892/ol.2021.12952
  13. Biol Cell. 2021 Aug 31.
      Mitochondria are dynamic organelles playing essential metabolic and signaling functions in cells. Their ultrastructure has been largely investigated with electron microscopy (EM) techniques. Super-resolution microscopy approaches such as direct stochastic optical reconstruction microscopy (dSTORM) provide a fluorescent-based, quantitative alternative to EM. However, dSTORM is mainly used to image integral mitochondrial proteins, and there is little or no information on proteins transiently present at this compartment. Here, we first benchmark the power of dSTORM to resolve protein proximities on individual mitochondrial subcompartments, coupled to Geo-coPositioning System (GcoPS) to quantify the degree of protein colocalization. With our dSTORM/GcoPS method, we then analyze the submitochondrial distribution of the cancer-related Aurora kinase A/AURKA, a protein localized at various subcellular locations including mitochondria. We show that dSTORM provides sufficient spatial resolution to detect a large pool of endogenous AURKA within the matrix, and we also uncover a second pool of the kinase at the Outer Mitochondrial Membrane (OMM). We conclude by demonstrating that an aldehyde-based fixation allows for a more specific detection of the OMM pool of AURKA. Our results indicate that dSTORM coupled to GcoPS colocalization analysis is a suitable approach to explore the compartmentalization of non-integral mitochondrial proteins as AURKA, in a qualitative and quantitative manner. This method also opens up the possibility of analyzing the proximity between AURKA and its multiple mitochondrial partners with exquisite spatial resolution, thereby allowing novel insights into the mitochondrial functions controlled by AURKA. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1111/boc.202100021
  14. Cell Death Dis. 2021 Aug 30. 12(9): 821
      Metabolic reprogramming is an integral part of the growth-promoting program driven by the MYC family of oncogenes. However, this reprogramming also imposes metabolic dependencies that could be exploited therapeutically. Here we report that the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is an attractive therapeutic target for MYCN-amplified neuroblastoma, a childhood cancer with poor prognosis. Gene expression profiling and metabolomic analysis reveal that MYCN promotes pyrimidine nucleotide production by transcriptional upregulation of DHODH and other enzymes of the pyrimidine-synthesis pathway. Genetic and pharmacological inhibition of DHODH suppresses the proliferation and tumorigenicity of MYCN-amplified neuroblastoma cell lines. Furthermore, we obtain evidence suggesting that serum uridine is a key factor in determining the efficacy of therapeutic agents that target DHODH. In the presence of physiological concentrations of uridine, neuroblastoma cell lines are highly resistant to DHODH inhibition. This uridine-dependent resistance to DHODH inhibitors can be abrogated by dipyridamole, an FDA-approved drug that blocks nucleoside transport. Importantly, dipyridamole synergizes with DHODH inhibition to suppress neuroblastoma growth in animal models. These findings suggest that a combination of targeting DHODH and nucleoside transport is a promising strategy to overcome intrinsic resistance to DHODH-based cancer therapeutics.
    DOI:  https://doi.org/10.1038/s41419-021-04120-w
  15. Am J Physiol Cell Physiol. 2021 09 01.
      Mitochondria are dynamic organelles that differ significantly in their morphologies across cell types, reflecting specific cellular needs and stages in development. Despite the wide biological significance in disease and health, delineating mitochondrial morphologies in complex systems remains challenging. Here, we present the Mitochondrial Cellular Phenotype (MitoCellPhe) tool developed for quantifying mitochondrial morphologies and demonstrate its utility in delineating differences in mitochondrial morphologies in a human fibroblast and human induced pluripotent stem cell (hiPSC) line. MitoCellPhe generates 24 parameters, allowing for a comprehensive analysis of mitochondrial structures and importantly allows for quantification to be performed on mitochondria in images containing single cells or clusters of cells. With this tool, we were able to validate previous findings that show networks of mitochondria in healthy fibroblast cell lines and a more fragmented morphology in hiPSCs. Using images generated from control and diseased fibroblasts and hiPSCs, we also demonstrate the efficacy of the toolset in delineating differences in morphologies between healthy and the diseased state in both stem cell (hiPSC) and differentiated fibroblast cells. Our results demonstrate that MitoCellPhe enables high-throughput, sensitive, detailed and quantitative mitochondrial morphological assessment and thus enables better biological insights into mitochondrial dynamics in health and disease.
    Keywords:  mitochondria; morphology; networks; stem cells; structure
    DOI:  https://doi.org/10.1152/ajpcell.00231.2021
  16. STAR Protoc. 2021 Sep 17. 2(3): 100753
      Reactive oxygen species (ROS) are implicated in endothelial dysfunction and cardiovascular disease. Endothelial cells (ECs) produce most ATP through glycolysis rather than oxidative phosphorylation; thus mitochondrial ROS production is lower than in other cell types. This makes quantification of changes in EC mitochondrial oxidative status challenging. Here, we present an optimized protocol using mitochondrial-targeted adenovirus-based redox sensor for ratiometric quantification of specific changes in mitochondrial ROS in live human coronary artery EC. For complete details on the use and execution of this protocol, please refer to Waypa et al. (2010); Liao et al. (2020); Gao et al. (2021).
    Keywords:  cell-based assays; metabolism; microscopy; molecular/chemical probes; single cell
    DOI:  https://doi.org/10.1016/j.xpro.2021.100753
  17. Front Pharmacol. 2021 ;12 725136
      Cannabidiol (CBD), the major non-psychoactive compound found in cannabis, is frequently used both as a nutraceutical and therapeutic. Despite anecdotal evidence as an anticancer agent, little is known about the effect CBD has on cancer cells. Given the intractability and poor prognoses of brain cancers in human and veterinary medicine, we sought to characterize the in vitro cytotoxicity of CBD on human and canine gliomas. Glioma cells treated with CBD showed a range of cytotoxicity from 4.9 to 8.2 μg/ml; canine cells appeared to be more sensitive than human. Treatment with >5 μg/ml CBD invariably produced large cytosolic vesicles. The mode of cell death was then interrogated using pharmacologic inhibitors. Inhibition of apoptosis was sufficient to rescue CBD-mediated cytotoxicity. Inhibition of RIPK3, a classical necroptosis kinase, also rescued cells from death and prevented the formation of the large cytosolic vesicles. Next, cellular mitochondrial activity in the presence of CBD was assessed and within 2 hours of treatment CBD reduced oxygen consumption in a dose dependent manner with almost complete ablation of activity at 10 μg/ml CBD. Fluorescent imaging with a mitochondrial-specific dye revealed that the large cytosolic vesicles were, in fact, swollen mitochondria. Lastly, calcium channels were pharmacologically inhibited and the effect on cell death was determined. Inhibition of mitochondrial channel VDAC1, but not the TRPV1 channel, rescued cells from CBD-mediated cytotoxicity. These results demonstrate the cytotoxic nature of CBD in human and canine glioma cells and suggest a mechanism of action involving dysregulation of calcium homeostasis and mitochondrial activity.
    Keywords:  anti-cancer agents; brain/CNS tumor; cancer; cannabidiol (CBD); glioma; mitochondria; pharmacology
    DOI:  https://doi.org/10.3389/fphar.2021.725136
  18. Nat Commun. 2021 Sep 01. 12(1): 5203
      Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was accompanied by an increase of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Combining AURKA inhibitors with inhibitors of FAO extends overall survival in orthotopic GBM PDX models. Taken together, these data suggest that simultaneous targeting of oxidative metabolism and AURKAi might be a potential novel therapy against recalcitrant malignancies.
    DOI:  https://doi.org/10.1038/s41467-021-25501-x
  19. Geroscience. 2021 Sep 04.
      It has been demonstrated that elamipretide (SS-31) rescues age-related functional deficits in the heart but the full set of mechanisms behind this have yet to be determined. We investigated the hypothesis that elamipretide influences post-translational modifications to heart proteins. The S-glutathionylation and phosphorylation proteomes of mouse hearts were analyzed using shotgun proteomics to assess the effects of aging on these post-translational modifications and the ability of the mitochondria-targeted drug elamipretide to reverse age-related changes. Aging led to an increase in oxidation of protein thiols demonstrated by increased S-glutathionylation of cysteine residues on proteins from Old (24 months old at the start of the study) mouse hearts compared to Young (5-6 months old). This shift in the oxidation state of the proteome was almost completely reversed by 8 weeks of treatment with elamipretide. Many of the significant changes that occurred were in proteins involved in mitochondrial or cardiac function. We also found changes in the mouse heart phosphoproteome that were associated with age, some of which were partially restored with elamipretide treatment. Parallel reaction monitoring of a subset of phosphorylation sites revealed that the unmodified peptide reporting for Myot S231 increased with age, but not its phosphorylated form and that both phosphorylated and unphosphorylated forms of the peptide covering cMyBP-C S307 increased, but that elamipretide treatment did not affect these changes. These results suggest that changes to thiol redox state and phosphorylation status are two ways in which age may affect mouse heart function, which can be restored by treatment with elamipretide.
    Keywords:  Aging; Elamipretide; Heart; Mass spectrometry; Mitochondria; Phosphoproteomics; Post-translational modification; Redox proteomics; S-glutathionylation; SS-31
    DOI:  https://doi.org/10.1007/s11357-021-00447-6
  20. J Physiol. 2021 Sep 01.
      KEY POINTS: Ischemia is highly deleterious to mammalian brain and this damage is largely mediated by mitochondrial dysfunction. Naked mole-rats are among the most hypoxia-tolerant mammals and their brain tolerates ischemia ex vivo, but the impact of ischemia on mitochondrial function is unknown. Naked mole-rat but not mouse brain mitochondria retain respiratory capacity and membrane integrity following ischemia or ischemia/reperfusion. Differences in free radical management and respiratory pathway control between species may mediate this tolerance. These results help us understand how natural models of hypoxia-tolerance also tolerate ischemia in brain.ABSTRACT: Naked mole-rats (NMRs; Heterocephalus glaber) are among the most hypoxia-tolerant mammals. There is evidence that NMR brain tolerates in vitro hypoxia and NMR brain mitochondria exhibit functional plasticity following in vivo hypoxia; however, if and how these organelles tolerate ischemia and how ischemic stress impacts mitochondrial energetics and redox regulation is entirely unknown. We hypothesized that mitochondria fundamentally contribute to in vitro ischemia resistance in NMR brain. To test this, we treated NMR and CD-1 mouse cortical brain sheets with an in vitro ischemic mimic and evaluated mitochondrial respiration capacity and redox regulation following 15- or 30-mins ischemia or ischemia/reperfusion (I/R). We found that, relative to mice, NMR brain largely retains mitochondrial function and redox balance post-ischemia and I/R. Specifically: i) ischemia reduced complex I and II -linked respiration ∼50-70% in mice, versus ∼20-40% in NMR brain, ii) NMR but not mouse brain maintained relatively steady respiration control ratios and robust mitochondrial membrane integrity, iii) electron leakage post-ischemia was lesser in NMR than mouse brain and NMR brain retained higher coupling efficiency, and iv) free radical generation during and following ischemia and I/R was lower from NMR brains than mice. Taken together, our results indicate that NMR brain mitochondria are more tolerant of ischemia and I/R than mice and retain respiratory capacity while avoiding redox derangements. Overall, these findings support the hypothesis that hypoxia-tolerant NMR brain is also ischemia-tolerant and suggest that NMRs may be a natural model of ischemia-tolerance in which to investigate evolutionarily derived solutions to ischemic pathology. This article is protected by copyright. All rights reserved.
    Keywords:  electron transport system; free radicals; glutamate dehydrogenase; membrane integrity; mitochondrial permeability transition pore; mitochondrial respiration
    DOI:  https://doi.org/10.1113/JP281942
  21. Cell Oncol (Dordr). 2021 Aug 30.
      PURPOSE: Chemotherapy based on cisplatin (CDDP) has been established as the treatment of choice for head and neck squamous cell carcinoma (HNSCC). Malignant tumors respond to microenvironmental alterations through a dynamic balance between mitochondrial fission and fusion. HNSCCs are known to exhibit hypoxic conditions, yet the respective effects and underlying mechanisms of hypoxia on chemosensitivity and mitochondrial dynamics remain to be resolved.METHODS: The effect of hypoxia on the chemosensitivity of HNCC cells was determined by flow cytometry. Mitochondrial fission factor (Mff) expression was assessed by RT-PCR and Western blotting in hypoxic HNSCC cells, and further verified in primary CDDP-sensitive and CDDP-resistant HSNCC samples. The biological function of Mff was evaluated by loss of function and gain of function analyses, both in vitro and in vivo.
    RESULTS: We found that hypoxia promoted mitochondrial fission and CDDP sensitivity in HNSCC cells. Importantly, Mff was found to be correlated with chemosensitivity in primary clinical samples under hypoxic conditions. Hypoxia-inducible factor 1α (HIF-1α) was found to markedly increase Mff transcription and to directly bind to Mff. Hypoxia enhanced the release of reactive oxygen species (ROS) and upregulated the expression of Mff via HIF-1α in HNSCC cells. ROS depletion in HNSCC cells attenuated HIF-1α expression, Mff expression and mitochondrial fission. Moreover, Mff knockdown led to suppression of hypoxia-induced mitochondrial fission and to decreased CDDP chemosensitivity in vivo and in vitro.
    CONCLUSIONS: Our findings indicate that hypoxia-induced release of ROS can promote mitochondrial fission and CDDP chemosensitivity via HIF1α/Mff regulation in HNSCC cells, indicating that Mff may serve as a biomarker to predict neoadjuvant chemosensitivity in HNSCC patients and as a target for overcoming chemoresistance.
    Keywords:  Cisplatin sensitivity; Head and neck squamous cell carcinoma; Hypoxia; Mitochondrial fission; ROS
    DOI:  https://doi.org/10.1007/s13402-021-00629-6
  22. Pharmacol Res Perspect. 2021 Oct;9(5): e00854
      Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.
    Keywords:  DLBCL; LKB1; Non-Hodgkin's lymphoma; STK11; lung cancer; mitochondrial complex 1
    DOI:  https://doi.org/10.1002/prp2.854
  23. J Biol Chem. 2021 Aug 27. pii: S0021-9258(21)00935-2. [Epub ahead of print] 101134
      The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with ageing. Up to now, the effects of a LONP1 defect were mostly studied by utilizing transient, siRNA-mediated knockdown approaches. We generated a new cellular model system for studying the impact of LONP1 on mitochondrial protein homeostasis by a CRISPR/Cas-mediated genetic knockdown (gKD). These cells show a stable reduction of LONP1 along with a mild phenotype characterized by absent morphological differences and only small negative effects on mitochondrial functions under normal culture conditions. To assess the consequences of a permanent LONP1 depletion on the mitochondrial proteome, we analyzed the alterations of protein levels by quantitative mass spectrometry, demonstrating small adaptive changes, in particular with respect to mitochondrial protein biogenesis. In an additional proteomic analysis, we determined the temperature-dependent aggregation behavior of mitochondrial proteins and its dependence on a reduction of LONP1 activity, demonstrating the important role of the protease for mitochondrial protein homeostasis in mammalian cells. We identified a significant number of mitochondrial proteins that are affected by LONP1 activity especially with respect to their stress-induced solubility. Taken together, our results suggest a very good applicability of the LONP1 gKD cell line as a model system for human ageing processes.
    Keywords:  Human; LONP1 protease; cell biology; mitochondria; protein aggregation; proteostasis
    DOI:  https://doi.org/10.1016/j.jbc.2021.101134
  24. Diabetes. 2021 Aug 30. pii: db210468. [Epub ahead of print]
      O-GlcNAc transferase (OGT), a nutrient-sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of β-cells is unexplored. Here, we identified the role of OGT in mitochondrial function in β-cells. Constitutive deletion of OGT (βOGTKO) or inducible ablation in mature β-cells (iβOGTKO) causes distinct effects on mitochondrial morphology and function. Islets from βOGTKO, but not iβOGTKO, mice display swollen mitochondria, reduced glucose-stimulated oxygen consumption rate, ATP production and glycolysis. Alleviating ER stress by genetic deletion of Chop did not rescue the mitochondrial dysfunction in βOGTKO mice. We identified altered islet proteome between βOGTKO and iβOGTKO mice. Pancreatic and duodenal homeobox 1 (Pdx1) was reduced in in βOGTKO islets. Pdx1 over-expression increased insulin content and improved mitochondrial morphology and function in βOGTKO islets. These data underscore the essential role of OGT in regulating β-cell mitochondrial morphology and bioenergetics. In conclusion, OGT couples nutrient signal and mitochondrial function to promote normal β-cell physiology.
    DOI:  https://doi.org/10.2337/db21-0468
  25. J Biol Chem. 2021 Aug 27. pii: S0021-9258(21)00936-4. [Epub ahead of print] 101135
      Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used mass spectrometry to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Aim32, a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1 binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea (HU), and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
    Keywords:  disulfide; mitochondria; mitochondrial transport; protein import; redox regulation; thiol; thioredoxin
    DOI:  https://doi.org/10.1016/j.jbc.2021.101135
  26. J Pharm Sci. 2021 Aug 31. pii: S0022-3549(21)00466-4. [Epub ahead of print]
      Large amounts of ATP are produced in mitochondria especially in the brain and heart, where energy consumption is high compared with other organs. Thus, a decrease in ATP production in such organs could be a cause of many diseases such as neurodegenerative diseases and heart disease. Based on thus assumption, increasing intracellular ATP production in such organs could be a therapeutic strategy. In this study, we report on the delivery of vitamin B1, a coenzyme that activates the tricarboxylic acid (TCA) cycle, to the inside of mitochondria. Since the TCA cycle is responsible for ATP production, we hypothesized delivering vitamin B1 to mitochondria would enhance ATP production. To accomplish this, we used a mitochondrial targeted liposome a "MITO-Porter" as the carrier. Using SH-SY5Y cells, a model neuroblast, cellular uptake and intracellular localization were analyzed using flow cytometry and confocal laser scanning microscopy. The optimized MITO-Porter containing encapsulated vitamin B1 (MITO-Porter (VB1)) was efficiently accumulated in mitochondria of SH-SY5Y cells. Further studies confirmed that the level of ATP production after the MITO-Porter (VB1) treatment was significantly increased as compared to a control group that was treated with naked vitamin B1. This study provides the potential for an innovative therapeutic strategy in which the TCA cycle is activated, thus enhancing ATP production. Relative ATP ratio (%) = IS/IU × 100, where IS and IU represent the intracellular ATP amounts for the treated and untreated cells with samples, respectively.
    Keywords:  MITO-Porter; Mitochondria; TCA cycle; mitochondrial delivery; neuroblast, liposomal delivery
    DOI:  https://doi.org/10.1016/j.xphs.2021.08.033
  27. Cancer Res. 2021 Sep 03. pii: canres.CAN-21-2734-E.2021. [Epub ahead of print]
      HSP90 is critical for the maintenance of cellular proteostasis. In cancer cells, HSP90 also becomes a nucleating site for the stabilization of multiprotein complexes including signaling pathways and transcription complexes. Here we describe the role of this HSP90 form, referred to as oncogenic HSP90, in the regulation of cytosolic metabolic pathways in proliferating B-cell lymphoma cells. Oncogenic HSP90 assisted in the organization of metabolic enzymes into non-membrane-bound functional compartments. Under experimental conditions that conserved cellular proteostasis, oncogenic HSP90 coordinated and sustained multiple metabolic pathways required for energy production and maintenance of cellular biomass as well as for secretion of extracellular metabolites. Conversely, inhibition of oncogenic HSP90, in the absence of apparent client protein degradation, decreased the efficiency of MYC-driven metabolic reprogramming. This study reveals that oncogenic HSP90 supports metabolism in B-cell lymphoma cells and patients with diffuse large B-cell lymphoma, providing a novel mechanism of activity for HSP90 inhibitors.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-2734
  28. Elife. 2021 09 01. pii: e63453. [Epub ahead of print]10
      Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.
    Keywords:  C. elegans; F-ATP synthase; aging; c-subunit; cell biology; mitochondrial permeability transition pore; mitochondrial unfolded protein response; oscp/atp-3
    DOI:  https://doi.org/10.7554/eLife.63453
  29. Oncol Rep. 2021 Oct;pii: 227. [Epub ahead of print]46(4):
      Leukemia is a common malignancy affecting humans worldwide. Pirarubicin (Pira) is one of the anticancer agents used for the treatment of leukemia. Although Pira is effective, drug resistance may develop in cancer cells exposed to this drug, whereas the combination of natural products with Pira may help to overcome this problem. The aim of the present study was to focus on the effect of gallic acid (GA) on the anticancer activity of Pira in K562 leukemia cells and K562/doxorubicin (Dox)‑resistant leukemia cells in order to investigate the possible underlying mechanisms. The cell viability, mitochondrial activity, mitochondrial membrane potential (ΔΨm) and ATP levels were assessed in living K562 and K562/Dox cancer cells following treatment with GA/Pira combination, GA alone or Pira alone. P‑glycoprotein‑mediated efflux of Pira was determined in GA‑treated K562/Dox cancer cells. The results demonstrated that GA/Pira combination decreased cell viability, mitochondrial activity, ΔΨm and ATP levels in K562 and K562/Dox cancer cells in a GA concentration‑dependent manner compared with non‑treated or Pira‑treated cells. GA inhibited P‑glycoprotein‑mediated efflux of Pira in GA‑treated K562/Dox cancer cells. Therefore, GA enhanced the anticancer effect of Pira on K562 and K562/Dox cancer cells through cellular energy status impairment, and was able to reverse drug resistance in living K562/Dox cancer cells by inhibiting the function of P‑glycoprotein.
    Keywords:  P‑glycoprotein; cancer; gallic acid; multidrug resistance; pirarubicin
    DOI:  https://doi.org/10.3892/or.2021.8178
  30. J Cell Biol. 2021 Nov 01. pii: e202104073. [Epub ahead of print]220(11):
      Defects in autophagy cause problems in metabolism, development, and disease. The autophagic clearance of mitochondria, mitophagy, is impaired by the loss of Vps13D. Here, we discover that Vps13D regulates mitophagy in a pathway that depends on the core autophagy machinery by regulating Atg8a and ubiquitin localization. This process is Pink1 dependent, with loss of pink1 having similar autophagy and mitochondrial defects as loss of vps13d. The role of Pink1 has largely been studied in tandem with Park/Parkin, an E3 ubiquitin ligase that is widely considered to be crucial in Pink1-dependent mitophagy. Surprisingly, we find that loss of park does not exhibit the same autophagy and mitochondrial deficiencies as vps13d and pink1 mutant cells and contributes to mitochondrial clearance through a pathway that is parallel to vps13d. These findings provide a Park-independent pathway for Pink1-regulated mitophagy and help to explain how Vps13D regulates autophagy and mitochondrial morphology and contributes to neurodegenerative diseases.
    DOI:  https://doi.org/10.1083/jcb.202104073
  31. Leukemia. 2021 Aug 30.
      Acute myeloid leukemia (AML) is considered a poor prognosis malignancy where patients exhibit altered glucose metabolism and stem cell signatures that contribute to AML growth and maintenance. Here, we report that the epigenetic factor, Ten-Eleven Translocation 3 (TET3) dioxygenase is overexpressed in AML patients and functionally validated human leukemic stem cells (LSCs), is required for leukemic growth by virtue of its regulation of glucose metabolism in AML cells. In human AML cells, TET3 maintains 5-hydroxymethylcytosine (5hmC) epigenetic marks and expression of early myeloid progenitor program, critical glucose metabolism and STAT5A signaling pathway genes, which also positively correlate with TET3 expression in AML patients. Consequently, TET3 depletion impedes hexokinase activity and L-Lactate production in AML cells. Conversely, overexpression of TET3 in healthy human hematopoietic stem progenitors (HSPCs) upregulates the expression of glucose metabolism, STAT5A signaling and AML associated genes, and impairs normal HSPC lineage differentiation in vitro. Finally, TET3 depletion renders AML cells highly sensitive to blockage of the TET3 downstream pathways glycolysis and STAT5 signaling via the combination of 2-Deoxy-D-glucose and STAT5 inhibitor which preferentially targets AML cells but spares healthy CD34+ HSPCs.
    DOI:  https://doi.org/10.1038/s41375-021-01390-3
  32. EMBO Rep. 2021 Aug 30. e52537
      Cholesterol is essential for membrane biogenesis, cell proliferation, and differentiation. The role of cholesterol in cancer development and the regulation of cholesterol synthesis are still under active investigation. Here we show that under normal-sterol conditions, p53 directly represses the expression of SQLE, a rate-limiting and the first oxygenation enzyme in cholesterol synthesis, in a SREBP2-independent manner. Through transcriptional downregulation of SQLE, p53 represses cholesterol production in vivo and in vitro, leading to tumor growth suppression. Inhibition of SQLE using small interfering RNA (siRNA) or terbinafine (a SQLE inhibitor) reverses the increased cell proliferation caused by p53 deficiency. Conversely, SQLE overexpression or cholesterol addition promotes cell proliferation, particularly in p53 wild-type cells. More importantly, pharmacological inhibition or shRNA-mediated silencing of SQLE restricts nonalcoholic fatty liver disease (NAFLD)-induced liver tumorigenesis in p53 knockout mice. Therefore, our findings reveal a role for p53 in regulating SQLE and cholesterol biosynthesis, and further demonstrate that downregulation of SQLE is critical for p53-mediated tumor suppression.
    Keywords:  SQLE; cell proliferation; cholesterol; p53
    DOI:  https://doi.org/10.15252/embr.202152537
  33. Acta Pharmacol Sin. 2021 Aug 30.
      Helichrysetin (HEL), a chalcone isolated from Alpinia katsumadai Hayata, has an antitumor activity in human lung and cervical cancers. However, the inhibitory effect and underlying mechanism of HEL in gastric cancer have not been elucidated. Here, HEL significantly inhibited the growth of gastric cancer MGC803 cells in vitro and in vivo. HEL decreased expression and transcriptional regulatory activity of c-Myc and mRNA expression of c-Myc target genes. HEL enhanced mitochondrial oxidative phosphorylation (OXPHOS) and reduced glycolysis as evidenced by increased mitochondrial adenosine triphosphate (ATP) production and excessive reactive oxygen species (ROS) accumulation, and decreased the pPDHA1/PDHA1 ratio and Glyco-ATP production. Pyruvate enhanced OXPHOS after HEL treatment. c-Myc overexpression abolished HEL-induced inhibition of cell viability, glycolysis, and protein expression of PDHK1 and LDHA. PDHK1 overexpression also counteracted inhibitory effect of HEL on cell viability. Conversely, c-Myc siRNA decreased cell viability, glycolysis, and PDHK1 expression. NAC rescued the decrease in viability of HEL-treated cells. Additionally, HEL inhibited the overactivated mTOR/p70S6K pathway in vitro and in vivo. HEL-induced cell viability inhibition was counteracted by an mTOR agonist. mTOR inhibitor also decreased cell viability. Similar results were obtained in SGC7901 cells. HEL repressed lactate production and efflux in MGC803 cells. These results revealed that HEL inhibits gastric cancer growth by targeting mTOR/p70S6K/c-Myc/PDHK1-mediated energy metabolism reprogramming in cancer cells. Therefore, HEL may be a potential agent for gastric cancer treatment by modulating cancer energy metabolism reprogramming.
    Keywords:  PDHK1; c-Myc; energy metabolism reprogramming; gastric cancer; helichrysetin
    DOI:  https://doi.org/10.1038/s41401-021-00750-0
  34. Nat Commun. 2021 Sep 02. 12(1): 5241
      Individual induced pluripotent stem cells (iPSCs) show considerable phenotypic heterogeneity, but the reasons for this are not fully understood. Comprehensively analysing the mitochondrial genome (mtDNA) in 146 iPSC and fibroblast lines from 151 donors, we show that most age-related fibroblast mtDNA mutations are lost during reprogramming. However, iPSC-specific mutations are seen in 76.6% (108/141) of iPSC lines at a mutation rate of 8.62 × 10-5/base pair. The mutations observed in iPSC lines affect a higher proportion of mtDNA molecules, favouring non-synonymous protein-coding and tRNA variants, including known disease-causing mutations. Analysing 11,538 single cells shows stable heteroplasmy in sub-clones derived from the original donor during differentiation, with mtDNA variants influencing the expression of key genes involved in mitochondrial metabolism and epidermal cell differentiation. Thus, the dynamic mtDNA landscape contributes to the heterogeneity of human iPSCs and should be considered when using reprogrammed cells experimentally or as a therapy.
    DOI:  https://doi.org/10.1038/s41467-021-25482-x
  35. ACS Nano. 2021 Sep 03.
      Recent advances in supramolecular chemistry research have led to the development of artificial chemical systems that can form self-assembled structures that imitate proteins involved in the regulation of cellular function. However, intracellular polymerization systems that operate inside living cells have been seldom reported. In this study, we developed an intramitochondrial polymerization-induced self-assembly system for regulating the cellular fate of cancer cells. It showed that polymeric disulfide formation inside cells occurred due to the high reactive oxygen species (ROS) concentration of cancer mitochondria. This polymerization barely occurs elsewhere in the cell owing to the reductive intracellular environment. The polymerization of the thiol-containing monomers further increases the ROS level inside the mitochondria, thereby autocatalyzing the polymerization process and creating fibrous polymeric structures. This process induces dysfunction of the mitochondria, which in turn activates cell necroptosis. Thus, this in situ polymerization system shows great potential for cancer treatment, including that of drug-resistant cancers.
    Keywords:  cancer; disulfide bond; intramitochondrial polymerization; polymerization induced self-assembly; reactive oxygen species
    DOI:  https://doi.org/10.1021/acsnano.1c04015
  36. J Biol Chem. 2021 Aug 27. pii: S0021-9258(21)00941-8. [Epub ahead of print] 101140
      Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g. extracellular flux analysis, high resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e. via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential 'next steps' to be taken that can address these highlighted challenges.
    Keywords:  ATP; Anaerobic glycolysis; Bioenergetics; Cell metabolism; Mitochondria
    DOI:  https://doi.org/10.1016/j.jbc.2021.101140
  37. Cell Rep Med. 2021 Aug 17. 2(8): 100373
      Functional profiling of a cancer patient's tumor cells holds potential to tailor personalized cancer treatment. Here, we report the utility of fresh uncultured tumor-derived EpCAM+ epithelial cells (FUTCs) for ex vivo drug-response interrogation. Analysis of murine Kras mutant FUTCs demonstrates pharmacological and adaptive signaling profiles comparable to subtype-matched cultured cells. By applying FUTC profiling on non-small-cell lung cancer patient samples, we report robust drug-response data in 19 of 20 cases, with cells exhibiting targeted drug sensitivities corresponding to their oncogenic drivers. In one of these cases, an EGFR mutant lung adenocarcinoma patient refractory to osimertinib, FUTC profiling is used to guide compassionate treatment. FUTC profiling identifies selective sensitivity to disulfiram and the combination of carboplatin plus etoposide, and the patient receives substantial clinical benefit from treatment with these agents. We conclude that FUTC profiling provides a robust, rapid, and actionable assessment of personalized cancer treatment options.
    Keywords:  ALK; EGFR; KRAS; drug sensitivity and resistance testing; ex vivo drug screening; functional diagnostics; lung cancer; personalized medicine; pharmacogenomics; targeted therapy
    DOI:  https://doi.org/10.1016/j.xcrm.2021.100373
  38. Front Immunol. 2021 ;12 723683
      Mitofusin 2 (MFN2) is a mitochondrial outer membrane GTPase, which modulates mitochondrial fusion and affects the interaction between endoplasmic reticulum and mitochondria. Here, we explored how MFN2 influences mitochondrial functions and inflammatory responses towards zymosan in primary human macrophages. A knockdown of MFN2 by small interfering RNA decreased mitochondrial respiration without attenuating mitochondrial membrane potential and reduced interactions between endoplasmic reticulum and mitochondria. A MFN2 deficiency potentiated zymosan-elicited inflammatory responses of human primary macrophages, such as expression and secretion of pro-inflammatory cytokines interleukin-1β, -6, -8 and tumor necrosis factor α, as well as induction of cyclooxygenase 2 and prostaglandin E2 synthesis. MFN2 silencing also increased zymosan-induced nuclear factor kappa-light-chain-enhancer of activated B cells and mitogen-activated protein kinases inflammatory signal transduction, without affecting mitochondrial reactive oxygen species production. Mechanistic studies revealed that MFN2 deficiency enhanced the toll-like receptor 2-dependent branch of zymosan-triggered responses upstream of inhibitor of κB kinase. This was associated with elevated, cytosolic expression of interleukin-1 receptor-associated kinase 4 in MFN2-deficient cells. Our data suggest pro-inflammatory effects of MFN2 deficiency in human macrophages.
    Keywords:  endoplasmic reticulum ; inflammation; macrophages; mitochondria; mitochondrial dynamics; zymosan
    DOI:  https://doi.org/10.3389/fimmu.2021.723683
  39. Nat Cancer. 2020 Sep;1(9): 923-934
      Macroautophagy (hereafter autophagy) degrades and recycles intracellular components to sustain metabolism and survival during starvation. Host autophagy promotes tumor growth by providing essential tumor nutrients. Autophagy also regulates immune cell homeostasis and function and suppresses inflammation. Although host autophagy does not promote a T-cell anti-tumor immune response in tumors with low tumor mutational burden (TMB), whether this was the case in tumors with high TMB was not known. Here we show that autophagy, especially in the liver, promotes tumor immune tolerance by enabling regulatory T-cell function and limiting stimulator of interferon genes, T-cell response and interferon-γ, which enables growth of high-TMB tumors. We have designated this as hepatic autophagy immune tolerance. Autophagy thereby promotes tumor growth through both metabolic and immune mechanisms depending on mutational load and autophagy inhibition is an effective means to promote an antitumor T-cell response in high-TMB tumors.
    DOI:  https://doi.org/10.1038/s43018-020-00110-7
  40. Mol Clin Oncol. 2021 Oct;15(4): 203
      Mitochondria are relevant for cancer initiation and progression. Antibodies against mitochondrially encoded cytochrome c oxidase II (MTCO2), targeting a mitochondria specific epitope, can be used to quantitate the mitochondria content of tumor cells. The present study evaluated the impact of the cellular mitochondrial content on the prognosis of patients with breast cancer using immunohistochemical analysis on 2,197 arrayed breast cancer specimens. Results were compared with histological tumor parameters, patient overall survival, tumor cell proliferation using Ki67 labeling index (Ki67LI) and various other molecular features. Tumor cells exhibited stronger MTCO2 expression than normal breast epithelial cells. MTCO2 immunostaining was largely absent in normal breast epithelium, but was observed in 71.9% of 1,797 analyzable cancer specimens, including 34.6% tumors with weak expression, 22.3% with moderate expression and 15.0% with strong expression. High MTCO2 expression was significantly associated with advanced tumor stage, high Bloom-Richardson-Elston/Nottingham (BRE) grade, nodal metastasis and shorter overall survival (P<0.0001 each). In multivariate analysis, MTCO2 expression did not provide prognostic information independent of BRE grade, pathological tumor and pathological lymph node status. Additionally, significant associations were observed for high MTCO2 expression and various molecular features, including high Ki67LI, amplifications of HER2, MYC, CCND1 and MDM2, deletions of PTEN, 8p21 and 9p, low estrogen receptor expression (P<0.0001 each) and progesterone receptor expression (P<0.0001). The present study demonstrated that high MTCO2 expression was strongly associated with a poor prognosis and unfavorable phenotypical and molecular tumor features in patients with breast cancer. This suggests that the mitochondrial content may have a pivotal role in breast cancer progression.
    Keywords:  IHC; MTCO2; TMA; breast cancer; prognosis
    DOI:  https://doi.org/10.3892/mco.2021.2365
  41. Sci China Life Sci. 2021 Aug 31.
      Mitochondria, double-membrane organelles, are known to participate in a variety of metabolic and signal transduction pathways. The intermembrane space (IMS) of mitochondria is proposed to subject to multiple damages emanating from the respiratory chain. The optic atrophy 1 (OPA1), an important protein for mitochondrial fusion, is cleaved into soluble short-form (S-OPA1) under stresses. Here we report that S-OPA1 could function as a molecular chaperone in IMS. We purified the S-OPA1 (amino acid sequence after OPA1 isoform 5 S1 site) protein and showed it protected substrate proteins from thermally and chemically induced aggregation and strengthened the thermotolerance of Escherichia coli (E. coli). We also showed that S-OPA1 conferred thermotolerance on IMS proteins, e.g., neurolysin. The chaperone activity of S-OPA1 may be required for maintaining IMS homeostasis in mitochondria.
    Keywords:  OPA1; chaperone; heat shock; mitochondria; mitochondrial homeostasis
    DOI:  https://doi.org/10.1007/s11427-021-1962-0
  42. Cancer Sci. 2021 Aug 29.
      Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using small interfering RNA (siRNA) and short hairpin RNA (shRNA) for AC inhibition with its mechanisms for pancreatic cancer were investigated. The inhibition of AC by siRNA and shRNA using an adeno-associated virus 8 (AAV8) vector had antiproliferative effects by inducing apoptosis in pancreatic cancer cells and xenograft mouse model. AC inhibition elicits mitochondrial dysfunction, reactive oxygen species accumulation, and manganese superoxide dismutase suppression, resulting in apoptosis of pancreatic cancer cells accompanied by ceramide accumulation. These results elucidated the mechanisms underlying the antitumor effect of AC inhibition in pancreatic cancer cells and suggest the potential of the AAV8 vector to inhibit AC as a therapeutic strategy.
    Keywords:  Acid ceramidase; Adeno-associated virus; Mitochondrial dysfunction; Oxidative stress; Pancreatic ductal adenocarcinoma
    DOI:  https://doi.org/10.1111/cas.15123
  43. Cancer Med. 2021 Sep 02.
      Rhabdomyosarcoma exhibits tumor-specific energy metabolic changes that include the Warburg effect. Since targeting cancer metabolism is a promising therapeutic approach, we examined the antitumor effects of suppressing lipid metabolism in rhabdomyosarcoma. We suppressed lipid metabolism in rhabdomyosarcoma cells in vitro by administering an inhibitor of malonyl-CoA decarboxylase, which increases malonyl-CoA and decreases fatty acid oxidation. Suppression of lipid metabolism in rhabdomyosarcoma cells decreased cell proliferation by inducing cell cycle arrest. Metabolomic analysis showed an increase in glycolysis and inactivation of the pentose phosphate pathway. Immunoblotting analysis revealed upregulated expression of the autophagy marker LC3A/B-II due to increased phosphorylation of AMP-activated protein kinase, a nutrient sensor. p21 protein expression level also increased. Inhibition of both lipid metabolism and autophagy suppressed tumor proliferation and increased apoptosis. In vivo studies involved injection of human Rh30 cells into the gastrocnemius muscle of 6-week-old female nude mice, which were divided into normal chow and low-fat diet groups. The mice fed a low-fat diet for 21 days showed reduced tumor growth compared to normal chow diet-fed mice. Suppression of lipid metabolism disrupted the equilibrium of the cancer-specific metabolism in rhabdomyosarcoma, resulting in a tumor growth-inhibition effect. Therefore, the development of treatments focusing on the lipid dependence of rhabdomyosarcoma is highly promising.
    Keywords:  cancer metabolism; lipid metabolism inhibition; low-fat diet; malonyl-CoA decarboxylase inhibitor; rhabdomyosarcoma
    DOI:  https://doi.org/10.1002/cam4.4185