bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021‒02‒28
fifty papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Aging Cell. 2021 Feb 24. e13321
      One of the hallmarks of aging is an accumulation of cells with defects in oxidative phosphorylation (OXPHOS) due to mutations of mitochondrial DNA (mtDNA). Rapidly dividing tissues maintained by stem cells, such as the colonic epithelium, are particularly susceptible to accumulation of OXPHOS defects over time; however, the effects on the stem cells are unknown. We have crossed a mouse model in which intestinal stem cells are labelled with EGFP (Lgr5-EGFP-IRES-creERT2) with a model of accelerated mtDNA mutagenesis (PolgAmut/mut ) to investigate the effect of OXPHOS dysfunction on colonic stem cell proliferation. We show that a reduction in complex I protein levels is associated with an increased rate of stem cell cycle re-entry. These changes in stem cell homeostasis could have significant implications for age-associated intestinal pathogenesis.
    Keywords:  aging; colon; complex I; mitochondria; stem cells
    DOI:  https://doi.org/10.1111/acel.13321
  2. Cell Metab. 2021 Feb 17. pii: S1550-4131(21)00057-7. [Epub ahead of print]
      Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.
    Keywords:  asparaginase; asparagine; cancer metabolism; cancer treatment; dietary restriction; metformin; respiration
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.001
  3. Front Oncol. 2020 ;10 631592
      Rapid proliferation of cancer cells is enabled by favoring aerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS). P32 (C1QBP/gC1qR) is essential for mitochondrial protein translation and thus indispensable for OXPHOS activity. It is ubiquitously expressed and directed to the mitochondrial matrix in almost all cell types with an excessive up-regulation of p32 expression reported for tumor tissues. We recently demonstrated high levels of non-mitochondrial p32 to be associated with high-grade colorectal carcinoma. Mutations in human p32 are likely to disrupt proper mitochondrial function giving rise to various diseases including cancer. Hence, we aimed to investigate the impact of the most common single nucleotide polymorphism (SNP) rs56014026 in the coding sequence of p32 on tumor cell metabolism. In silico homology modeling of the resulting p.Thr130Met mutated p32 revealed that the single amino acid substitution potentially induces a strong conformational change in the protein, mainly affecting the mitochondrial targeting sequence (MTS). In vitro experiments confirmed an impaired mitochondrial import of mutated p32-T130M, resulting in reduced OXPHOS activity and a shift towards a low metabolic phenotype. Overexpression of p32-T130M maintained terminal differentiation of a goblet cell-like colorectal cancer cell line compared to p32-wt without affecting cell proliferation. Sanger sequencing of tumor samples from 128 CRC patients identified the heterozygous SNP rs56014026 in two well-differentiated, low proliferating adenocarcinomas, supporting our in vitro data. Together, the SNP rs56014026 reduces metabolic activity and proliferation while promoting differentiation in tumor cells.
    Keywords:  C1QBP; OXPHOS; colorectal cancer; metabolism; mitochondria; p32; single nucleotide polymorphism
    DOI:  https://doi.org/10.3389/fonc.2020.631592
  4. Nat Metab. 2021 Feb;3(2): 196-210
      Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogenesis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore, acetylome analysis of Hmgcs2 KO cells revealed enhanced acetylation of mitochondrial proteins. These findings suggest that neonatal ketogenesis protects the energy-producing capacity of mitochondria by preventing the hyperacetylation of mitochondrial proteins.
    DOI:  https://doi.org/10.1038/s42255-021-00342-6
  5. Oncogenesis. 2021 Feb 26. 10(2): 18
      Mitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.
    DOI:  https://doi.org/10.1038/s41389-021-00306-1
  6. Front Oncol. 2020 ;10 621458
      Metabolism in acute myeloid leukemia (AML) cells is dependent primarily on oxidative phosphorylation. However, in order to sustain their high proliferation rate and metabolic demand, leukemic blasts use a number of metabolic strategies, including glycolytic metabolism. Understanding whether monocarboxylate transporters MCT1 and MCT4, which remove the excess of lactate produced by cancer cells, represent new hematological targets, and whether their respective inhibitors, AR-C155858 and syrosingopine, can be useful in leukemia therapy, may reveal a novel treatment strategy for patients with AML. We analyzed MCT1 and MCT4 expression and function in hematopoietic progenitor cells from healthy cord blood, in several leukemic cell lines and in primary leukemic blasts from patients with AML, and investigated the effects of AR-C155858 and syrosingopine, used alone or in combination with arabinosylcytosine, on leukemic cell proliferation. We found an inverse correlation between MCT1 and MCT4 expression levels in leukemic cells, and showed that MCT4 overexpression is associated with poor prognosis in AML patients. We also found that AR-C155858 and syrosingopine inhibit leukemic cell proliferation by activating two different cell-death related pathways, i.e., necrosis for AR-C155858 treatment and autophagy for syrosingopine, and showed that AR-C155858 and syrosingopine exert an anti-proliferative effect, additive to chemotherapy, by enhancing leukemic cells sensitivity to chemotherapeutic agents. Altogether, our study shows that inhibition of MCT1 or MCT4 impairs leukemic cell proliferation, suggesting that targeting lactate metabolism may be a new therapeutic strategy for AML, and points to MCT4 as a potential therapeutic target in AML patients and to syrosingopine as a new anti-proliferative drug and inducer of autophagy to be used in combination with conventional chemotherapeutic agents in AML treatment.
    Keywords:  AR-C155858; MCT1; MCT4; acute myeloid leukemia; autophagy; lactate metabolism; syrosingopine
    DOI:  https://doi.org/10.3389/fonc.2020.621458
  7. Front Cell Dev Biol. 2021 ;9 614668
      Cancer cells have increased energy requirements due to their enhanced proliferation activity. This energy demand is, among others, met by mitochondrial ATP production. Since the second messenger Ca2+ maintains the activity of Krebs cycle dehydrogenases that fuel mitochondrial respiration, proper mitochondrial Ca2+ uptake is crucial for a cancer cell survival. However, a mitochondrial Ca2+ overload induces mitochondrial dysfunction and, ultimately, apoptotic cell death. Because of the vital importance of balancing mitochondrial Ca2+ levels, a highly sophisticated machinery of multiple proteins manages mitochondrial Ca2+ homeostasis. Notably, mitochondria sequester Ca2+ preferentially at the interaction sites between mitochondria and the endoplasmic reticulum (ER), the largest internal Ca2+ store, thus, pointing to mitochondrial-associated membranes (MAMs) as crucial hubs between cancer prosperity and cell death. To investigate potential regulatory mechanisms of the mitochondrial Ca2+ uptake routes in cancer cells, we modulated mitochondria-ER tethering and the expression of UCP2 and analyzed mitochondrial Ca2+ homeostasis under the various conditions. Hence, the expression of contributors to mitochondrial Ca2+ regulation machinery was quantified by qRT-PCR. We further used data from The Cancer Genome Atlas (TCGA) to correlate these in vitro findings with expression patterns in human breast invasive cancer and human prostate adenocarcinoma. ER-mitochondrial linkage was found to support a mitochondrial Ca2+ uptake route dependent on uncoupling protein 2 (UCP2) in cancer cells. Notably, combined overexpression of Rab32, a protein kinase A-anchoring protein fostering the ER-mitochondrial tethering, and UCP2 caused a significant drop in cancer cells' viability. Artificially enhanced ER-mitochondrial tethering further initiated a sudden decline in the expression of UCP2, probably as an adaptive response to avoid mitochondrial Ca2+ overload. Besides, TCGA analysis revealed an inverse expression correlation between proteins stabilizing mitochondrial-ER linkage and UCP2 in tissues of human breast invasive cancer and prostate adenocarcinoma. Based on these results, we assume that cancer cells successfully manage mitochondrial Ca2+ uptake to stimulate Ca2+-dependent mitochondrial metabolism while avoiding Ca2+-triggered cell death by fine-tuning ER-mitochondrial tethering and the expression of UCP2 in an inversed manner. Disruption of this equilibrium yields cancer cell death and may serve as a treatment strategy to specifically kill cancer cells.
    Keywords:  ER stress; cancer cells; mitochondrial Ca2+ homeostasis; mitochondrial-ER interaction; uncoupling protein 2
    DOI:  https://doi.org/10.3389/fcell.2021.614668
  8. Biochem Biophys Res Commun. 2021 Feb 18. pii: S0006-291X(21)00210-2. [Epub ahead of print]547 162-168
      Although acute myeloid leukemia (AML) is a highly heterogeneous disease with diverse genetic subsets, one hallmark of AML blasts is myeloid differentiation blockade. Extensive evidence has indicated that differentiation induction therapy represents a promising treatment strategy. Here, we identified that the pharmacological inhibition of the mitochondrial electron transport chain (ETC) complex III by antimycin A inhibits proliferation and promotes cellular differentiation of AML cells. Mechanistically, we showed that the inhibition of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in de novo pyrimidine biosynthesis, is involved in antimycin A-induced differentiation. The activity of antimycin A could be reversed by supplement of excessive amounts of exogenous uridine as well as orotic acid, the product of DHODH. Furthermore, we also found that complex III inhibition exerts a synergistic effect in differentiation induction combined with DHODH inhibitor brequinar as well as with the pyrimidine salvage pathway inhibitor dipyridamole. Collectively, our study uncovered the link between mitochondrial complex III and AML differentiation and may provide further insight into the potential application of mitochondrial complex III inhibitor as a mono or combination treatment in differentiation therapy of AML.
    Keywords:  Acute myeloid leukemia; Differentiation therapy; Mitochondrial ETC complex III; Pyrimidine biosynthesis
    DOI:  https://doi.org/10.1016/j.bbrc.2021.02.027
  9. Biochim Biophys Acta Mol Basis Dis. 2021 Feb 19. pii: S0925-4439(21)00037-5. [Epub ahead of print] 166104
      Depolarized/damaged mitochondria aggregate at the perinuclear region prior to mitophagy in cells treated with mitochondrial stressors. However, the cellular mechanism(s) by which damaged mitochondria are transported and remain aggregated at the perinuclear region is unknown. Here, we demonstrate that mitofusins (Mfn1/2) are post-translationally modified by SUMO2 (Small Ubiquitin-related Modifier 2) in Human embryonic kidney 293 (Hek293) cells treated with protonophore CCCP and proteasome inhibitor MG132, both known mitochondrial stressors. SUMOylation of Mfn1/2 is not for their proteasomal degradation but facilitate mitochondrial congression at the perinuclear region in CCCP- and MG132-treated cells. Additionally, congressed mitochondria (mito-aggresomes) colocalize with LC3, ubiquitin, and SUMO2 in CCCP-treated cells. Knowing that SUMO functions as a "molecular glue" to facilitate protein-protein interactions, we propose that SUMOylation of Mfn1/2 may congress, glues, and confines damaged mitochondria to the perinuclear region thereby, protectively quarantining them from the heathy mitochondrial network until their removal via mitophagy in cells.
    Keywords:  26S Proteasome; Autophagy; Mitochondria; Mitofusin; Mitophagy; Small Ubiquitin Modifier (SUMO); ubiquitin
    DOI:  https://doi.org/10.1016/j.bbadis.2021.166104
  10. Mol Biol Evol. 2021 Feb 22. pii: msab054. [Epub ahead of print]
      In Metazoa, 4 out of 5 complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mito-nuclear coevolution. Previous studies have supported co-adaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the "nuclear compensation hypothesis", a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations owing to less efficient mitochondrial selection. In this study we analysed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with "doubly uniparental" mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared to non-OXPHOS-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared to nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
    Keywords:  Bivalvia; Compensatory Evolution; Evolutionary Rates; Mitonuclear Coevolution; OXPHOS
    DOI:  https://doi.org/10.1093/molbev/msab054
  11. Biochem Biophys Res Commun. 2021 Feb 17. pii: S0006-291X(21)00225-4. [Epub ahead of print]547 102-110
      Proteasome inhibitors represent effective anti-tumor drugs. ONX0912 is a novel oral proteasome inhibitor that selectively targets the chymotrypsin-like activity of 20S proteasome subunits β5 and LMP7 (Low molecular mass polypeptide-7). It has been shown to be effective in hematologic malignancies. However, its anti-tumor effect in solid tumors remains unclear. Here, we discovered that ONX0912 suppressed the expansion of liver cancer cells. ONX0912 treatment led to an increased level of mitochondrial membrane potential collapse and mitochondrial ROS in tumor cells in a concentration- and exposure time-dependent manner, indicating ONX0912 triggers apoptosis through the intrinsic mitochondrial pathway. ONX0912 also induced mitophagy by activating Parkin/Pink pathway. Silencing mitophagy receptor protein, p62, aggravated the ONX0912-mediated apoptosis, which implied a new mechanism for the conversion between autophagy and apoptosis. Furthermore, we found that the ONX0912 target protein, LMP7 was overexpressed in liver cancer tissues compared to their adjacent tissues and increased level of LMP7 predicted worse clinical characteristics and poorer prognosis. In conclusion, we demonstrated that ONX0912 suppressed liver cancer cell expansion by inducing apoptosis and mitophagy. Our data also revealed ONX0912 as a potential clinical therapeutic drug for liver cancer therapy, and inhibition of mitophagy may sensitize the anti-tumor effect of ONX0912.
    Keywords:  LMP7; Liver cancer; Mitochondrial apoptosis; Mitophagy; ONX0912
    DOI:  https://doi.org/10.1016/j.bbrc.2021.02.037
  12. FASEB J. 2021 Mar;35(3): e21362
      Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.
    Keywords:  FeS-cluster assembly; mitochondria; mitochondrial morphology; respiration
    DOI:  https://doi.org/10.1096/fj.202000524RR
  13. ACS Pharmacol Transl Sci. 2021 Feb 12. 4(1): 327-337
      Asparagine deprivation by l-asparaginase (L-ASNase) is an effective therapeutic strategy in acute lymphoblastic leukemia, with resistance occurring due to upregulation of ASNS, the only human enzyme synthetizing asparagine (Annu. Rev. Biochem. 2006, 75 (1), 629-654). l-Asparaginase efficacy in solid tumors is limited by dose-related toxicities (OncoTargets and Therapy 2017, pp 1413-1422). Large-scale loss of function genetic in vitro screens identified ASNS as a cancer dependency in several solid malignancies (Cell 2017, 170 (3), 564-576.e16. Cell 2017, 170 (3), 577-592.e10). Here we evaluate the therapeutic potential of targeting ASNS in melanoma cells. While we confirm in vitro dependency on ASNS silencing, this is largely dispensable for in vivo tumor growth, even in the face of asparagine deprivation, prompting us to characterize such a resistance mechanism to devise novel therapeutic strategies. Using ex vivo quantitative proteome and transcriptome profiling, we characterize the compensatory mechanism elicited by ASNS knockout melanoma cells allowing their survival. Mechanistically, a genome-wide CRISPR screen revealed that such a resistance mechanism is elicited by a dual axis: GCN2-ATF4 aimed at restoring amino acid levels and MAPK-BCLXL to promote survival. Importantly, pharmacological inhibition of such nodes synergizes with l-asparaginase-mediated asparagine deprivation in ASNS deficient cells suggesting novel potential therapeutic combinations in melanoma.
    DOI:  https://doi.org/10.1021/acsptsci.0c00196
  14. Sci Rep. 2021 Feb 25. 11(1): 4544
      Doxorubicin (DOX) is considered one of the most powerful chemotherapeutic agents but its clinical use has several limitations, including cardiomyopathy and cellular resistance to the drug. By using transferrin (Tf) as a drug carrier, however, the adverse effects of doxorubicin as well as drug resistance can be reduced. The main objective of this study was to determine the exact nature and extent to which mitochondrial function is influenced by DOX-Tf conjugate treatment, specifically in human breast adenocarcinoma cells. We assessed the potential of DOX-Tf conjugate as a drug delivery system, monitoring its cytotoxicity using the MTT assay and ATP measurements. Moreover, we measured the alterations of mitochondrial function and oxidative stress markers. The effect of DOX-Tf was the most pronounced in MDA-MB-231, triple-negative breast cancer cells, whereas non-cancer endothelial HUVEC-ST cells were more resistant to DOX-Tf conjugate than to free DOX treatment. A different sensitivity of two investigate breast cancer cell lines corresponded to the functionality of their cellular antioxidant systems and expression of estrogen receptors. Our data also revealed that conjugate treatment mediated free radical generation and altered the mitochondrial bioenergetics in breast cancer cells.
    DOI:  https://doi.org/10.1038/s41598-021-84146-4
  15. Nat Metab. 2021 Feb;3(2): 182-195
      Head and neck squamous cell carcinoma (SCC) remains among the most aggressive human cancers. Tumour progression and aggressiveness in SCC are largely driven by tumour-propagating cells (TPCs). Aerobic glycolysis, also known as the Warburg effect, is a characteristic of many cancers; however, whether this adaptation is functionally important in SCC, and at which stage, remains poorly understood. Here, we show that the NAD+-dependent histone deacetylase sirtuin 6 is a robust tumour suppressor in SCC, acting as a modulator of glycolysis in these tumours. Remarkably, rather than a late adaptation, we find enhanced glycolysis specifically in TPCs. More importantly, using single-cell RNA sequencing of TPCs, we identify a subset of TPCs with higher glycolysis and enhanced pentose phosphate pathway and glutathione metabolism, characteristics that are strongly associated with a better antioxidant response. Together, our studies uncover enhanced glycolysis as a main driver in SCC, and, more importantly, identify a subset of TPCs as the cell of origin for the Warburg effect, defining metabolism as a key feature of intra-tumour heterogeneity.
    DOI:  https://doi.org/10.1038/s42255-021-00350-6
  16. Cell Biol Toxicol. 2021 Feb 25.
      Current cancer treatment regimens such as chemotherapy and traditional chemical drugs have adverse side effects including the appearance of drug-resistant tumor cells. For these reasons, it is imperative to find novel therapeutic agents that overcome these factors. To this end, we explored a cationic antimicrobial peptide derived from Litopenaeus vannamei hemocyanin (designated LvHemB1) that induces cancer cell death, but sparing normal cells. LvHemB1 inhibits the proliferation of human cervical (HeLa), esophageal (EC109), hepatocellular (HepG2), and bladder (EJ) cancer cell lines, but had no significant effect on normal liver cell lines (T-antigen-immortalized human liver epithelial (THLE-3) cells). In addition to its antiproliferative effects, LvHemB1 induced apoptosis, by permeating cells and targeting mitochondrial voltage-dependent anion channel 1 (VDAC1). Colocalization studies revealed the localization of LvHemB1 in mitochondria, while molecular docking and pull-down analyses confirmed LvHemB1-VDAC1 interaction. Moreover, LvHemB1 causes loss in mitochondrial membrane potential and increases levels of reactive oxygen species (ROS) and apoptotic proteins (caspase-9, caspase-3, and Bax (Bcl-2-associated X)), which results in mitochondrial-mediated apoptosis. Thus, peptide LvHemB1 has the potential of being used as an anticancer agent due to its antiproliferation effect and targeting to VDAC1 to cause mitochondrial dysfunction in cancer cells, as well as its ability to induce apoptosis by increasing ROS levels, and the expression of proapoptotic proteins.
    Keywords:  Anticancer; Antiproliferative effect; Apoptosis; Cationic antimicrobial peptide; Litopenaeus vannamei hemocyanin; Mitochondrial dysfunction
    DOI:  https://doi.org/10.1007/s10565-021-09588-y
  17. Sci Rep. 2021 Feb 23. 11(1): 4390
      The prognosis of metastatic melanoma remains poor due to de novo or acquired resistance to immune and targeted therapies. Previous studies have shown that melanoma cells have perturbed metabolism and that cellular metabolic pathways represent potential therapeutic targets. To support the discovery of new drug candidates for melanoma, we examined 180 metabolic modulators, including phytochemicals and anti-diabetic compounds, for their growth-inhibitory activities against melanoma cells, alone and in combination with the BRAF inhibitor vemurafenib. Two positive hits from this screen, 4-methylumbelliferone (4-MU) and ursolic acid (UA), were subjected to validation and further characterization. Metabolic analysis showed that 4-MU affected cellular metabolism through inhibition of glycolysis and enhanced the effect of vemurafenib to reduce the growth of melanoma cells. In contrast, UA reduced mitochondrial respiration, accompanied by an increase in the glycolytic rate. This metabolic switch potentiated the growth-inhibitory effect of the pyruvate dehydrogenase kinase inhibitor dichloroacetate. Both drug combinations led to increased production of reactive oxygen species, suggesting the involvement of oxidative stress in the cellular response. These results support the potential use of metabolic modulators for combination therapies in cancer and may encourage preclinical validation and clinical testing of such treatment strategies in patients with metastatic melanoma.
    DOI:  https://doi.org/10.1038/s41598-021-83796-8
  18. Nature. 2021 Feb 24.
      Mitochondrial DNA double-strand breaks (mtDSBs) are toxic lesions that compromise the integrity of mitochondrial DNA (mtDNA) and alter mitochondrial function1. Communication between mitochondria and the nucleus is essential to maintain cellular homeostasis; however, the nuclear response to mtDSBs remains unknown2. Here, using mitochondrial-targeted transcription activator-like effector nucleases (TALENs)1,3,4, we show that mtDSBs activate a type-I interferon response that involves the phosphorylation of STAT1 and activation of interferon-stimulated genes. After the formation of breaks in the mtDNA, herniation5 mediated by BAX and BAK releases mitochondrial RNA into the cytoplasm and triggers a RIG-I-MAVS-dependent immune response. We further investigated the effect of mtDSBs on interferon signalling after treatment with ionizing radiation and found a reduction in the activation of interferon-stimulated genes when cells that lack mtDNA are exposed to gamma irradiation. We also show that mtDNA breaks synergize with nuclear DNA damage to mount a robust cellular immune response. Taken together, we conclude that cytoplasmic accumulation of mitochondrial RNA is an intrinsic immune surveillance mechanism for cells to cope with mtDSBs, including breaks produced by genotoxic agents.
    DOI:  https://doi.org/10.1038/s41586-021-03269-w
  19. Proc Natl Acad Sci U S A. 2021 Mar 02. pii: e2018342118. [Epub ahead of print]118(9):
      Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.
    Keywords:  C. elegans; hydrogen sulfide; mitochondria; mouse; muscle
    DOI:  https://doi.org/10.1073/pnas.2018342118
  20. Cell Death Dis. 2021 Feb 26. 12(2): 215
      Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
    DOI:  https://doi.org/10.1038/s41419-021-03505-1
  21. Blood. 2021 Feb 22. pii: blood.2020007489. [Epub ahead of print]
      Mitochondria of hematopoietic stem cells (HSCs) play crucial roles in regulating cell fate and preserving HSC functionality and survival. However, the mechanism underlying its regulation remains poorly understood. Here, we identify transcription factor TWIST1 as a novel regulator of HSC maintenance through modulating mitochondrial function. We demonstrate that Twist1 deletion results in a significantly decreased lymphoid-biased (Ly-biased) HSC frequency, markedly reduced HSC dormancy and self-renewal capacities, and skewed myeloid differentiation in steady-state hematopoiesis. Twist1-deficient HSCs are more compromised in tolerance of irradiation and 5-fluorouracil-induced stresses, and exhibit typical phenotypes of senescence. Mechanistically, Twist1 deletion induces transactivation of voltage-gated calcium channel (VGCC) Cacna1b which exhausts Ly-biased HSCs, impairs genotoxic hematopoietic recovery, and enhances mitochondrial calcium levels, metabolic activity, and reactive oxygen species production. Suppression of VGCC by a calcium channel blocker largely rescues the phenotypic and functional defects in Twist1-deleted HSCs under both steady-state and stress conditions. Collectively, our data, for the first time, characterize TWIST1 as a critical regulator of HSC function acting through the CACNA1B/Ca2+/mitochondria axis, and highlight the importance of Ca2+ in HSC maintenance. These observations provide new insights into the mechanisms for the control of HSC fate.
    DOI:  https://doi.org/10.1182/blood.2020007489
  22. Food Chem Toxicol. 2021 Feb 23. pii: S0278-6915(21)00118-6. [Epub ahead of print] 112085
      Succinate dehydrogenase complex II inhibitors (SDHIs) are widely used fungicides since the 1960s. Recently, based on published in vitro cell viability data, potential health effects via disruption of the mitochondrial respiratory chain and tricarboxylic acid cycle have been postulated in mammalian species. As primary metabolic impact of SDH inhibition, an increase in succinate, and compensatory ATP production via glycolysis resulting in excess lactate levels was hypothesized. To investigate these hypotheses, genome-scale metabolic models of Rattus norvegicus and Homo sapiens were used for an in silico analysis of mammalian metabolism. Moreover, plasma samples from 28-day studies with the SDHIs boscalid and fluxapyroxad were subjected to metabolome analyses, to assess in vivo metabolite changes induced by SDHIs. The outcome of in silico analyses indicated that mammalian metabolic networks are robust and able to compensate different types of metabolic perturbation, e.g., partial or complete SDH inhibition. Additionally, the in silico comparison of rat and human responses suggested no noticeable differences between both species, evidencing that the rat is an appropriate testing organism for toxicity of SDHIs. Since no succinate or lactate accumulation were found in rats, such an accumulation is also not expected in humans as a result of SDHI exposure.
    Keywords:  Metabolomics; SDHI; in silico; lactate; metabolic modeling; mitochondria; respiratory chain; succinate
    DOI:  https://doi.org/10.1016/j.fct.2021.112085
  23. Nat Commun. 2021 02 24. 12(1): 1279
      Blood circulating proteins are confounded readouts of the biological processes that occur in different tissues and organs. Many proteins have been linked to complex disorders and are also under substantial genetic control. Here, we investigate the associations between over 1000 blood circulating proteins and body mass index (BMI) in three studies including over 4600 participants. We show that BMI is associated with widespread changes in the plasma proteome. We observe 152 replicated protein associations with BMI. 24 proteins also associate with a genome-wide polygenic score (GPS) for BMI. These proteins are involved in lipid metabolism and inflammatory pathways impacting clinically relevant pathways of adiposity. Mendelian randomization suggests a bi-directional causal relationship of BMI with LEPR/LEP, IGFBP1, and WFIKKN2, a protein-to-BMI relationship for AGER, DPT, and CTSA, and a BMI-to-protein relationship for another 21 proteins. Combined with animal model and tissue-specific gene expression data, our findings suggest potential therapeutic targets further elucidating the role of these proteins in obesity associated pathologies.
    DOI:  https://doi.org/10.1038/s41467-021-21542-4
  24. Clin Transl Med. 2021 Feb;11(2): e324
      Kidney damage initiates the deteriorating metabolic states in tubule cells that lead to the development of end-stage renal disease (ESTD). Interleukin-22 (IL-22) is an effective therapeutic antidote for kidney injury via promoting kidney recovery, but little is known about the underlying molecular mechanisms. Here, we first provide evidence that IL-22 attenuates kidney injury via metabolic reprogramming of renal tubular epithelial cells (TECs). Specifically, our data suggest that IL-22 regulates mitochondrial function and glycolysis in damaged TECs. Further observations indicate that IL-22 alleviates the accumulation of mitochondrial reactive oxygen species (ROS) and dysfunctional mitochondria via the induction of AMPK/AKT signaling and PFBFK3 activities. In mice, amelioration of kidney injury and necrosis and improvement of kidney functions via regulation of these metabolism relevant signaling and mitochondrial fitness of recombinant IL-22 are certificated in cisplatin-induced kidney damage and diabetic nephropathy (DN) animal models. Taken together, our findings unravel new mechanistic insights into protective effects of IL-22 on kidneys and highlight the therapeutic opportunities of IL-22 and the involved metabolic regulators in various kidney diseases.
    Keywords:  interleukin-22; kidney injury; metabolic reprogramming; mitochondrial dysfunction
    DOI:  https://doi.org/10.1002/ctm2.324
  25. J Cell Mol Med. 2021 Feb 21.
      Ferroptosis is an iron-dependent mode of non-apoptotic cell death characterized by accumulation of lipid reactive oxygen species (ROS). As a regulator of ROS, cytoglobin (CYGB) plays an important role in oxygen homeostasis and acts as a tumour suppressor. However, the mechanism by which CYGB regulates cell death is largely unknown. Here, we show that CYGB overexpression increased ROS accumulation and disrupted mitochondrial function as determined by the oxygen consumption rate and membrane potential. Importantly, ferroptotic features with accumulated lipid ROS and malondialdehyde were observed in CYGB-overexpressing colorectal cancer cells. Moreover, CYGB significantly increased the sensitivity of cancer cells to RSL3- and erastin-induced ferroptotic cell death. Mechanically, both YAP1 and p53 were significantly increased based on the RNA sequencing. The knock-down of YAP1 alleviated production of lipid ROS and sensitivity to ferroptosis in CYGB overexpressed cells. Furthermore, YAP1 was identified to be inhibited by p53 knock-down. Finally, high expression level of CYGB had the close correlation with key genes YAP1 and ACSL4 in ferroptosis pathway in colon cancer based on analysis from TCGA data. Collectively, our results demonstrated a novel tumour suppressor role of CYGB through p53-YAP1 axis in regulating ferroptosis and suggested a potential therapeutic approach for colon cancer.
    Keywords:  YAP1; colon cancer; cytoglobin; ferroptosis; lipid peroxidation; p53
    DOI:  https://doi.org/10.1111/jcmm.16400
  26. Ageing Res Rev. 2021 Feb 21. pii: S1568-1637(21)00056-8. [Epub ahead of print] 101309
      Mitochondria are highly dynamic organelles capable of adapting their network, morphology, and function, playing a role in oxidative phosphorylation and many cellular processes in most cell types. Skeletal muscle is a very plastic tissue, subjected to many morphological changes following diverse stimuli, such as during myogenic differentiation and regenerative myogenesis. For some time now, mitochondria have been reported to be involved in myogenesis by promoting a bioenergetic remodeling and assisting myoblasts in surviving the process. However, not much is known about the interplay between mitochondrial quality control and myogenic differentiation. Sestrin2 (SESN2) is a well described regulator of autophagy and antioxidant responses and has been gaining attention due to its role in aging-associated pathologies and redox signaling promoted by reactive oxygen species (ROS) in many tissues. Current evidence involving SESN2-associated pathways suggest that it can act as a potential regulator of mitochondrial quality control following induction by ROS under stress conditions, such as during myogenesis. Yet, there are no studies directly assessing SESN2 involvement in myogenic differentiation. This review provides novel insights pertaining the involvement of SESN2 in myogenic differentiation by analyzing the interactions between ROS and mitochondrial remodeling.
    Keywords:  SESN2; differentiation; mitochondria; mitohormesis; myogenesis
    DOI:  https://doi.org/10.1016/j.arr.2021.101309
  27. Front Endocrinol (Lausanne). 2020 ;11 621944
      Perturbed Nicotinamide adenine dinucleotide (NAD+) homeostasis is involved in cancer progression and metastasis. Quinolinate phosphoribosyltransferase (QPRT) is the rate-limiting enzyme in the kynurenine pathway participating in NAD+ generation. In this study, we demonstrated that QPRT expression was upregulated in invasive breast cancer and spontaneous mammary tumors from MMTV-PyVT transgenic mice. Knockdown of QPRT expression inhibited breast cancer cell migration and invasion. Consistently, ectopic expression of QPRT promoted cell migration and invasion in breast cancer cells. Treatment with QPRT inhibitor (phthalic acid) or P2Y11 antagonist (NF340) could reverse the QPRT-induced invasiveness and phosphorylation of myosin light chain. Similar reversibility could be observed following treatment with Rho inhibitor (Y16), ROCK inhibitor (Y27632), PLC inhibitor (U73122), or MLCK inhibitor (ML7). Altogether, these results indicate that QPRT enhanced breast cancer invasiveness probably through purinergic signaling and might be a potential prognostic indicator and therapeutic target in breast cancer.
    Keywords:  NAD; breast cancer; myosin light chain; neoplasm invasiveness; quinolinate phosphoribosyltransferase
    DOI:  https://doi.org/10.3389/fendo.2020.621944
  28. Autophagy. 2021 Feb 25. 1-3
      Phase-separated droplets with liquid-like properties can be degraded by macroautophagy/autophagy, but the mechanism underlying this degradation is poorly understood. We have recently derived a physical model to investigate the interaction between autophagic membranes and such droplets, uncovering that intrinsic wetting interactions underlie droplet-membrane contacts. We found that the competition between droplet surface tension and the increasing tendency of growing membrane sheets to bend determines whether a droplet is completely engulfed or isolated in a piecemeal fashion, a process we term fluidophagy. Intriguingly, we found that another critical parameter of droplet-membrane interactions, the spontaneous curvature of the membrane, determines whether the droplet is degraded by autophagy or - counterintuitively - serves as a platform from which autophagic membranes expand into the cytosol. We also discovered that the interaction of membrane-associated LC3 with the LC3-interacting region (LIR) found in the autophagic cargo receptor protein SQSTM1/p62 and many other autophagy-related proteins influences the preferred bending directionality of forming autophagosomes in living cells. Our study provides a physical account of how droplet-membrane wetting underpins the structure and fate of forming autophagosomes.
    Keywords:  Autophagy; condensate; droplet; isolation membrane; membrane; p62; phase separation; piecemeal autophagy; wetting
    DOI:  https://doi.org/10.1080/15548627.2021.1887548
  29. Cell Death Dis. 2021 Feb 24. 12(2): 204
      Apoptosis related protein in TGF-β signaling pathway (ARTS) was originally discovered in cells undergoing apoptosis in response to TGF-β, but ARTS also acts downstream of many other apoptotic stimuli. ARTS induces apoptosis by antagonizing the anti-apoptotic proteins XIAP and Bcl-2. Here we identified the pro-apoptotic Sept4/ARTS gene as a p53-responsive target gene. Ectopic p53 and a variety of p53-inducing agents increased both mRNA and protein levels of ARTS, whereas ablation of p53 reduced ARTS expression in response to multiple stress conditions. Also, γ-irradiation induced p53-dependent ARTS expression in mice. Consistently, p53 binds to the responsive DNA element on the ARTS promoter and transcriptionally activated the promoter-driven expression of a luciferase reporter gene. Interestingly, ARTS binds to and sequesters p53 at mitochondria, enhancing the interaction of the latter with Bcl-XL. Ectopic ARTS markedly augments DNA damage stress- or Nutlin-3-triggered apoptosis, while ablation of ARTS preferentially impairs p53-induced apoptosis. Altogether, these findings demonstrate that ARTS collaborates with p53 in mitochondria-engaged apoptosis.
    DOI:  https://doi.org/10.1038/s41419-021-03463-8
  30. Cell Mol Life Sci. 2021 Feb 23.
      Preservation of mitochondrial quality is paramount for cellular homeostasis. The integrity of mitochondria is guarded by the balanced interplay between anabolic and catabolic mechanisms. The removal of bio-energetically flawed mitochondria is mediated by the process of mitophagy; the impairment of which leads to the accumulation of defective mitochondria which signal the activation of compensatory mechanisms to the nucleus. This process is known as the mitochondrial retrograde response (MRR) and is enacted by Reactive Oxygen Species (ROS), Calcium (Ca2+), ATP, as well as imbalanced lipid and proteostasis. Central to this mitochondria-to-nucleus signalling are the transcription factors (e.g. the nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB) which drive the expression of genes to adapt the cell to the compromised homeostasis. An increased degree of cellular proliferation is among the consequences of the MRR and as such, engagement of mitochondrial-nuclear communication is frequently observed in cancer. Mitophagy and the MRR are therefore interlinked processes framed to, respectively, prevent or compensate for mitochondrial defects.In this review, we discuss the available knowledge on the interdependency of these processes and their contribution to cell signalling in cancer.
    Keywords:  Cell signalling and Cancer; Mitochondrial retrograde response; Mitophagy
    DOI:  https://doi.org/10.1007/s00018-021-03770-5
  31. Elife. 2021 Feb 22. pii: e64611. [Epub ahead of print]10
      Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subjected to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial tricarboxylic acid (TCA) energetics, and redox balance are significantly reprogrammed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate that sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.
    Keywords:  immunology; inflammation; liver; metabolism; mouse; sepsis; steatosis
    DOI:  https://doi.org/10.7554/eLife.64611
  32. Aging (Albany NY). 2021 Feb 22. 13
      The development of high-throughput technologies has yielded a large amount of data from molecular and epigenetic analysis that could be useful for identifying novel biomarkers of cancers. We analyzed Gene Expression Omnibus (GEO) DataSet micro-ribonucleic acid (miRNA) profiling datasets to identify miRNAs that could have value as diagnostic and prognostic biomarkers in hepatocellular carcinoma (HCC). We adopted several computing methods to identify the functional roles of these miRNAs. Ultimately, via integrated analysis of three GEO DataSets, three differential miRNAs were identified as valuable markers in HCC. Combining the results of receiver operating characteristic (ROC) analyses and Kaplan-Meier Plotter (KM) survival analyses, we identified hsa-let-7e as a novel potential biomarker for HCC diagnosis and prognosis. Then, we found via quantitative reverse-transcription polymerase chain reaction (RT-qPCR) that let-7e was upregulated in HCC tissues and that such upregulation was significantly associated with poor prognosis in HCC. The results of functional analysis indicated that upregulated let-7e promoted tumor cell growth and proliferation. Additionally, via mechanistic analysis, we found that let-7e could regulate mitochondrial apoptosis and autophagy to adjust and control cancer cell proliferation. Therefore, the integrated results of our bioinformatics analyses of both clinical and experimental data showed that let-7e was a novel biomarker for HCC diagnosis and prognosis and might be a new treatment target.
    Keywords:  GEO database; bioinformatics; biomarker; hepatocellular carcinoma; miRNAs
    DOI:  https://doi.org/10.18632/aging.202606
  33. Biochim Biophys Acta Gen Subj. 2021 Feb 23. pii: S0304-4165(21)00044-1. [Epub ahead of print] 129886
      BACKGROUND: In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.SCOPE OF REVIEW: In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos.
    MAJOR CONCLUSIONS: Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.
    GENERAL SIGNIFICANCE: Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.
    Keywords:  Allophagy; Fertilization; Maternal inheritance; Mitochondria; Mitochondrial DNA; Mitophagy
    DOI:  https://doi.org/10.1016/j.bbagen.2021.129886
  34. Cell Rep. 2021 Feb 23. pii: S2211-1247(21)00080-2. [Epub ahead of print]34(8): 108767
      Although induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, has emerged as an anticancer strategy, the metabolic basis of ferroptotic death remains poorly elucidated. Here, we show that glucose determines the sensitivity of human pancreatic ductal carcinoma cells to ferroptosis induced by pharmacologically inhibiting system xc-. Mechanistically, SLC2A1-mediated glucose uptake promotes glycolysis and, thus, facilitates pyruvate oxidation, fuels the tricyclic acid cycle, and stimulates fatty acid synthesis, which finally facilitates lipid peroxidation-dependent ferroptotic death. Screening of a small interfering RNA (siRNA) library targeting metabolic enzymes leads to identification of pyruvate dehydrogenase kinase 4 (PDK4) as the top gene responsible for ferroptosis resistance. PDK4 inhibits ferroptosis by blocking pyruvate dehydrogenase-dependent pyruvate oxidation. Inhibiting PDK4 enhances the anticancer activity of system xc- inhibitors in vitro and in suitable preclinical mouse models (e.g., a high-fat diet diabetes model). These findings reveal metabolic reprogramming as a potential target for overcoming ferroptosis resistance.
    Keywords:  PDK4; cancer; fatty acid; ferroptosis; glucose; glycolysis; metabolism; pyruvate oxidation; resistance; therapy
    DOI:  https://doi.org/10.1016/j.celrep.2021.108767
  35. J Eukaryot Microbiol. 2021 Feb 23. e12846
      The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.
    Keywords:  Cristae; Kinetoplastid; Mitochondria; Tomography; Trypanosoma
    DOI:  https://doi.org/10.1111/jeu.12846
  36. Cancer Biol Med. 2021 Feb 15. 18(1): 172-183
      Objective: Macrophages are a major component of the tumor microenvironment. M1 macrophages secrete pro-inflammatory factors that inhibit tumor growth and development, whereas tumor-associated macrophages (TAMs) mainly exhibit an M2 phenotype. Our previous studies have shown that the interleukin-33/ST2 (IL-33/ST2) axis is essential for activation of the M1 phenotype. This study investigates the role of the IL-33/ST2 axis in TAMs, its effects on tumor growth, and whether it participates in the mutual conversion between the M1 and M2 phenotypes.Methods: Bone marrow-derived macrophages were extracted from wildtype, ST2 knockout (ST2-/-), and Il33-overexpressing mice and differentiated with IL-4. The mitochondrial and lysosomal number and location, and the expression of related proteins were used to analyze mitophagy. Oxygen consumption rates and glucose and lactate levels were measured to reveal metabolic changes.
    Results: The IL-33/ST2 axis was demonstrated to play an important role in the metabolic conversion of macrophages from OXPHOS to glycolysis by altering mitophagy levels. The IL-33/ST2 axis promoted enhanced cell oxidative phosphorylation, thereby further increasing M2 polarization gene expression and ultimately promoting tumor growth (P < 0.05) (Figure 4). This metabolic shift was not due to mitochondrial damage, because the mitochondrial membrane potential was not significantly altered by IL-4 stimulation or ST2 knockout; however, it might be associated with the mTOR activity.
    Conclusions: These results clarify the interaction between the IL-33/ST2 pathway and macrophage polarization, and may pave the way to the development of new cancer immunotherapies targeting the IL-33/ST2 axis.
    Keywords:  IL-33/ST2; glucose metabolism; macrophage polarization; mitophagy; tumor microenvironment
    DOI:  https://doi.org/10.20892/j.issn.2095-3941.2020.0211
  37. EMBO J. 2021 Feb 23. e107165
      Mitochondria contain an autonomous and spatially segregated genome. The organizational unit of their genome is the nucleoid, which consists of mitochondrial DNA (mtDNA) and associated architectural proteins. Here, we show that phase separation is the primary physical mechanism for assembly and size control of the mitochondrial nucleoid (mt-nucleoid). The major mtDNA-binding protein TFAM spontaneously phase separates in vitro via weak, multivalent interactions into droplets with slow internal dynamics. TFAM and mtDNA form heterogenous, viscoelastic structures in vitro, which recapitulate the dynamics and behavior of mt-nucleoids in vivo. Mt-nucleoids coalesce into larger droplets in response to various forms of cellular stress, as evidenced by the enlarged and transcriptionally active nucleoids in mitochondria from patients with the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS). Our results point to phase separation as an evolutionarily conserved mechanism of genome organization.
    Keywords:  TFAM; biomolecular condensate; genome organization; mitochondrial genome; phase separation
    DOI:  https://doi.org/10.15252/embj.2020107165
  38. Theriogenology. 2021 Jan 20. pii: S0093-691X(21)00029-7. [Epub ahead of print]165 18-27
      Many studies have reported that interspecies somatic cell nuclear transfer (iSCNT) is considered the prominent method in preserving endangered animals. However, the development rate of iSCNT embryos is low, and there are limited studies on the molecular mechanism of the iSCNT process. This study evaluated the developmental potential of interspecies lycaon (Lycaon pictus)-dog embryos and assessed the mitochondrial content and metabolism of the produced cloned lycaon-dog fetus. Of 678 collected oocytes, 516 were subjected to nuclear transfer, and 419 reconstructed embryos with male lycaon fibroblasts were transferred into 27 surrogates. Of 720 oocytes, 568 were subjected to nuclear transfer and 469 reconstructed embryos with female lycaon fibroblasts were transferred into 31 surrogates. Two recipients who received female reconstructed embryos were identified as pregnant at 30 days. However, fetal retardation with no cardiac activity was observed at 46 days. Microsatellite analysis confirmed that the cloned lycaon-dog fetus was genetically identical to the lycaon donor cell, whereas mitochondrial sequencing analysis revealed that oocyte donor dogs transmitted their mtDNA. We assessed the oxygen consumption rate and mitochondrial content of the aborted lycaon-dog fetus to shed some light on the aborted fetus's cellular metabolism. The oxygen consumption rates in the lycaon-dog fetal fibroblasts were lower than those in adult dog, lycaon and cloned dog fetal fibroblasts. Furthermore, lycaon-dog fetal fibroblasts showed decreased proportions of live and active mitochondria compared with other groups. Overall, we hypothesized that nuclear-mitochondrial incompatibility affects pyruvate metabolism and that these processes cause intrauterine fetal death.
    Keywords:  Interspecies somatic cell nuclear transfer; Lycaon; Metabolism; Mitochondria
    DOI:  https://doi.org/10.1016/j.theriogenology.2021.01.010
  39. Trends Biochem Sci. 2021 Feb 19. pii: S0968-0004(21)00029-3. [Epub ahead of print]
      Recently, three groups, Girardi et al., Kory et al., and Luongo et al., independently identified solute carrier (SLC) 25A51 as the long-sought, major mitochondrial NAD+ transporter in mammalian cells. These studies not only deorphan an uncharacterized transporter of the SLC25A family, but also shed light on other aspects of NAD+ biology.
    Keywords:  NAD; SLC25A family; mitochondrial transporter; redox; respiration
    DOI:  https://doi.org/10.1016/j.tibs.2021.02.001
  40. Nat Commun. 2021 02 23. 12(1): 1252
      Upon starvation, cells rewire their metabolism, switching from glucose-based metabolism to mitochondrial oxidation of fatty acids, which require the transfer of FAs from lipid droplets (LDs) to mitochondria at mitochondria-LD membrane contact sites (MCSs). However, factors responsible for FA transfer at these MCSs remain uncharacterized. Here, we demonstrate that vacuolar protein sorting-associated protein 13D (VPS13D), loss-of-function mutations of which cause spastic ataxia, coordinates FA trafficking in conjunction with the endosomal sorting complex required for transport (ESCRT) protein tumor susceptibility 101 (TSG101). The VPS13 adaptor-binding domain of VPS13D and TSG101 directly remodels LD membranes in a cooperative manner. The lipid transfer domain of human VPS13D binds glycerophospholipids and FAs in vitro. Depletion of VPS13D, TSG101, or ESCRT-III proteins inhibits FA trafficking from LDs to mitochondria. Our findings suggest that VPS13D mediates the ESCRT-dependent remodeling of LD membranes to facilitate FA transfer at mitochondria-LD contacts.
    DOI:  https://doi.org/10.1038/s41467-021-21525-5
  41. Dev Cell. 2021 Feb 22. pii: S1534-5807(21)00069-1. [Epub ahead of print]56(4): 461-477.e7
      Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.
    Keywords:  BRCA1/2; cancer evolution; genome instability; homology-directed repair; hypoxia; nascent DNA degradation; reactive oxygen species; replication stress; ribonucleotide reductase; translesion DNA synthesis
    DOI:  https://doi.org/10.1016/j.devcel.2021.01.011
  42. Cell Rep. 2021 Feb 23. pii: S2211-1247(21)00081-4. [Epub ahead of print]34(8): 108768
      Mucoepidermoid carcinoma (MEC) is a life-threatening salivary gland cancer that is driven primarily by a transcriptional coactivator fusion composed of cyclic AMP-regulated transcriptional coactivator 1 (CRTC1) and mastermind-like 2 (MAML2). The mechanisms by which the chimeric CRTC1/MAML2 (C1/M2) oncoprotein rewires gene expression programs that promote tumorigenesis remain poorly understood. Here, we show that C1/M2 induces transcriptional activation of the non-canonical peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) splice variant PGC-1α4, which regulates peroxisome proliferator-activated receptor gamma (PPARγ)-mediated insulin-like growth factor 1 (IGF-1) expression. This mitogenic transcriptional circuitry is consistent across cell lines and primary tumors. C1/M2-positive tumors exhibit IGF-1 pathway activation, and small-molecule drug screens reveal that tumor cells harboring the fusion gene are selectively sensitive to IGF-1 receptor (IGF-1R) inhibition. Furthermore, this dependence on autocrine regulation of IGF-1 transcription renders MEC cells susceptible to PPARγ inhibition with inverse agonists. These results yield insights into the aberrant coregulatory functions of C1/M2 and identify a specific vulnerability that can be exploited for precision therapy.
    Keywords:  CRTC1-MAML2; IGF-1 inhibitor; PPARGC1A, IGF-1; cancer; chromosomal translocation; gene fusion; oncogene; transcriptional co-activator
    DOI:  https://doi.org/10.1016/j.celrep.2021.108768
  43. Mitochondrion. 2021 Feb 18. pii: S1567-7249(21)00012-X. [Epub ahead of print]
      Novel therapeutic strategies for Alzheimer's disease (AD) are of the greatest priority given the consistent failure of recent clinical trials focused on Aβ or pTau. Earlier, we demonstrated that mild mitochondrial complex I inhibitor CP2 blocks neurodegeneration and cognitive decline in multiple mouse models of AD. To evaluate the safety of CP2 in humans, we performed a genome-wide association study (GWAS) using 196 lymphoblastoid cell lines and identified 11 SNP loci and 64 mRNA expression probe sets that potentially associate with CP2 susceptibility. Using primary mouse neurons and pharmacokinetic study, we show that CP2 is generally safe at a therapeutic dose.
    Keywords:  Alzheimer’s Disease; genome-wide association study; lymphoblastoid cell lines; mitochondrial Complex I inhibitor
    DOI:  https://doi.org/10.1016/j.mito.2021.02.005
  44. Metabolism. 2021 Feb 22. pii: S0026-0495(21)00033-0. [Epub ahead of print] 154733
      It is well-established that mitochondria are the powerhouses of the cell, producing adenosine triphosphate (ATP), the universal energy currency. However, the most significant strengths of the electron transport chain (ETC), its intricacy and efficiency, are also its greatest downfalls. A reliance on metal complexes (FeS clusters, hemes), lipid moities such as cardiolipin, and cofactors including alpha-lipoic acid and quinones render oxidative phosphorylation vulnerable to environmental toxins, intracellular reactive oxygen species (ROS) and fluctuations in diet. To that effect, it is of interest to note that temporal disruptions in ETC activity in most organisms are rarely fatal, and often a redundant number of failsafes are in place to permit continued ATP production when needed. Here, we highlight the metabolic reconfigurations discovered in organisms ranging from parasitic Entamoeba to bacteria such as pseudomonads and then complex eukaryotic systems that allow these species to adapt to and occasionally thrive in harsh environments. The overarching aim of this review is to demonstrate the plasticity of metabolic networks and recognize that in times of duress, life finds a way.
    Keywords:  ATP; Energy; Metabolic reconfiguration; Metabolism; Mitochondrial dysfunction
    DOI:  https://doi.org/10.1016/j.metabol.2021.154733
  45. Nature. 2021 Feb 24.
      The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.
    DOI:  https://doi.org/10.1038/s41586-021-03270-3
  46. Cancer Manag Res. 2021 ;13 1559-1570
      Purpose: Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer-related death. There is a critical need for the development of novel therapies in GC. DNA polymerase gamma (PolG) has been implicated in mitochondrial homeostasis and affects the development of numerous types of cancer, however, its effects on GC and molecular mechanisms remain to be fully determined. The aim of the present research was to clarify the effects of PolG on GC and its possible molecular mechanism of action.Methods: The GSE62254 dataset was used to predict the effect of PolG on prognostic value in GC patients. Lentivirus-mediated transduction was used to silence PolG expression. Western blot analysis evinced the silencing effect. Co-immunoprecipitation (Co-IP) analysis was performed to explore the potential molecular mechanism of action. Analysis of the glycolysis process in GC cells was also undertaken. Cell proliferation was determined using a CCK-8 (Cell Counting Kit-8) proliferation assay. Cell migration was detected using the Transwell device. Animal experiments were used to measure in vivo xenograft tumor growth.
    Results: GC patients with low PolG expression have worse overall survival (OS) and progression-free survival (PFS). PolG binds to PKM2 and affects the activation of Tyr105-site phosphorylation, thus interfering with the glycolysis of GC cells. In vitro tumor formation experiments in mice also confirmed that PolG silencing of GC has a stronger proliferation ability. PolG can suppress GC cell growth both in vivo and in vitro.
    Conclusion: Our study reveals a potential molecular mechanism between PolG and the energy metabolic process of GC tumor cells for the first time, suggesting PolG as an independent novel potential therapeutic target for tumor therapy, and providing new ideas for clinical GC treatment.
    Keywords:  DNA polymerase gamma; PKM protein; energy metabolism; stomach neoplasms; tumor suppressor
    DOI:  https://doi.org/10.2147/CMAR.S292306
  47. Nat Commun. 2021 02 24. 12(1): 1281
      Regulatory T cells (Tregs) play an important role in maintaining immune homeostasis and, within tumors, their upregulation is common and promotes an immunosuppressive microenvironment. Therapeutic strategies that can eliminate Tregs in the tumor (i.e., therapies that do not run the risk of affecting normal tissues), are urgently needed for the development of cancer immunotherapies. Here we report our discovery of B-cell lymphoma extra-large (BCL-XL) as a potential molecular target of tumor-infiltrating (TI) Tregs. We show that pharmacological degradation of BCL-XL using a newly developed platelet-sparing BCL-XL Proteolysis-targeting chimera (PROTAC) induces the apoptosis of TI-Tregs and the activation of TI-CD8+ T cells. Moreover, these activities result in an effective suppression of syngeneic tumor growth in immunocompetent, but not in immunodeficient or CD8+ T cell-depleted mice. Notably, treatment with BCL-XL PROTAC does not cause detectable damage within several normal tissues or thrombocytopenia. These findings identify BCL-XL as a target in the elimination of TI-Tregs as a component of cancer immunotherapies, and that the BCL-XL-specific PROTAC has the potential to be developed as a therapeutic for cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41467-021-21573-x
  48. Function (Oxf). 2021 ;2(2): zqab001
      Nonacholic fatty liver disease, or hepatic steatosis, is the most common liver disorder affecting the western world and currently has no pharmacologic cure. Thus, many investigations have focused on alternative strategies to treat or prevent hepatic steatosis. Our laboratory has shown that chronic heat treatment (HT) mitigates glucose intolerance, insulin resistance, and hepatic steatosis in rodent models of obesity. Here, we investigate the direct bioenergetic mechanism(s) surrounding the metabolic effects of HT on hepatic mitochondria. Utilizing mitochondrial proteomics and respiratory function assays, we show that one bout of acute HT (42°C for 20 min) in male C57Bl/6J mice (n = 6/group) triggers a hepatic mitochondrial heat shock response resulting in acute reductions in respiratory capacity, degradation of key mitochondrial enzymes, and induction of mitophagy via mitochondrial ubiquitination. We also show that chronic bouts of HT and recurrent activation of the heat shock response enhances mitochondrial quality and respiratory function via compensatory adaptations in mitochondrial organization, gene expression, and transport even during 4 weeks of high-fat feeding (n = 6/group). Finally, utilizing a liver-specific heat shock protein 72 (HSP72) knockout model, we are the first to show that HSP72, a protein putatively driving the HT metabolic response, does not play a significant role in the hepatic mitochondrial adaptation to acute or chronic HT. However, HSP72 is required for the reductions in blood glucose observed with chronic HT. Our data are the first to suggest that chronic HT (1) improves hepatic mitochondrial respiratory efficiency via mitochondrial remodeling and (2) reduces blood glucose in a hepatic HSP72-dependent manner.
    Keywords:  HSP72; autophagy; chaperone-mediated autophagy; liver; mitochondrial organization; mitophagy; redox; ubiquitin
    DOI:  https://doi.org/10.1093/function/zqab001
  49. Nat Commun. 2021 02 22. 12(1): 1209
      Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1β after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.
    DOI:  https://doi.org/10.1038/s41467-021-21461-4