bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2020‒08‒09
sixty-one papers selected by
Kelsey Fisher-Wellman, East Carolina University

  1. Front Oncol. 2020 ;10 1123
      NUAK1 is an AMPK-related kinase located in the cytosol and the nucleus, whose expression associates with tumor malignancy and poor patient prognosis in several cancers. Accordingly, NUAK1 was associated with metastasis because it promotes cell migration and invasion in different cancer cells. Besides, NUAK1 supports cancer cell survival under metabolic stress and maintains ATP levels in hepatocarcinoma cells, suggesting a role in energy metabolism in cancer. However, the underlying mechanism for this metabolic function, as well as its link to NUAK1 subcellular localization, is unclear. We demonstrated that cytosolic NUAK1 increases ATP levels, which associates with increased mitochondrial respiration, supporting that cytosolic NUAK1 is involved in mitochondrial function regulation in cancer cells. NUAK1 inhibition led to the formation of "donut-like" structures, providing evidence of NUAK1-dependent mitochondrial morphology regulation. Additionally, our results indicated that cytosolic NUAK1 increases the glycolytic capacity of cancer cells under mitochondrial inhibition. Nuclear NUAK1 seems to be involved in the metabolic switch to glycolysis. Altogether, our results suggest that cytosolic NUAK1 participates in mitochondrial ATP production and the maintenance of proper glycolysis in cancer cells. Our current studies support the role of NUAK1 in bioenergetics, mitochondrial homeostasis, glycolysis and metabolic capacities. They suggest different metabolic outcomes depending on its subcellular localization. The identified roles of NUAK1 in cancer metabolism provide a potential mechanism relevant for tumor progression and its association with poor patient prognosis in several cancers. Further studies could shed light on the molecular mechanisms involved in the identified metabolic NUAK1 functions.
    Keywords:  NUAK1; cancer metabolism; cell bioenergetic; glycolytic switch; mitochondrial donut; oxidative cells; seahorse assay
  2. ChemMedChem. 2020 Aug 03.
      Mitochondrial dysfunction is a hallmark of cancer cells and targeting cancer mitochondria has emerged as a promising anti-cancer therapy. Previously, we have repurposed nitrogen mustard chlorambucil by conjugating it with a mitochondrial targeting triphenylphosphonium (TPP) group to design compound Mito-Chlor that acts on mitochondria DNA (mtDNA). Herein, we show that the repurposed compound Mito-Chlor, but not chlorambucil, inhibits the nascent transcription of mtDNA using Bru-seq. Clustering analysis of transcriptomic profile of our Bru-seq database led to the identification of another mitochondrial transcription inhibitor SQD1, which inhibits the proliferation of MIA PaCa-2 cells at low micromolar range. However, Mito-Chlor reduces expression of mitochondrial proteins, interferes with mitochondria membrane potential, and impairs oxidative phosphorylation while SQD1 does not. Both compounds increased cellular and mitochondrial reactive oxygen species and stimulated similar signaling pathway. As mitochondrial transcription inhibitors and redox modulators, SQD1 and Mito-Chlor are promising for cancer treatment by manipulating mitochondrial function.
    Keywords:  antitumor, bru-seq, mitochondria transcription, mRNA, reactive oxygen species (ROS)
  3. Basic Res Cardiol. 2020 Aug 03. 115(5): 53
      In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H2O2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H2O2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H2O2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H2O2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H2O2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H2O2-eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H2O2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H2O2-eliminating capacity increases H2O2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H2O2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H2O2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.
    Keywords:  Mitochondria; Nicotinamide nucleotide transhydrogenase; Reactive oxygen species; α-Ketoglutarate dehydrogenase
  4. J Biol Chem. 2020 Aug 03. pii: jbc.RA120.013899. [Epub ahead of print]
      Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system (ETS) is particularly sensitive to added energy supply (i.e., reductive stress) which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by  activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through β-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP and low-ADP stimulated respiration that accelerating flux through β-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within β-oxidation and the ETS serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real-time.
    Keywords:  beta-oxidation; bioenergetics; electron transport system (ETS); energy metabolism; hydrogen sulfide; mitochondrial metabolism; nicotinamide nucleotide transhydrogenase; redox regulation
  5. Biomedicines. 2020 Aug 03. pii: E270. [Epub ahead of print]8(8):
      Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago ("Warburg effect" or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.
    Keywords:  OXPHOS; biguanides; cancer metabolism; energetic metabolism; metabolic heterogeneity; mitochondria; mitochondrial complex I; mitochondrial metabolism; pancreatic ductal adenocarcinoma; therapeutic strategy
  6. Exp Cell Res. 2020 Aug 03. pii: S0014-4827(20)30462-6. [Epub ahead of print] 112213
      Extensive literature has demonstrated that acute myeloid leukaemia (AML) cells show enhanced mitochondrial biogenesis and increased reliance on oxidative phosphorylation (OXPHOS) compared with normal hematopoietic progenitors, and one hallmark of AML leukaemia blasts is myeloid differentiation blockade. However, relatively few reports have linked these processes. Recent studies have indicated that therapies that overcome differentiation arrest represent an effective treatment strategy. Here, we identified that the disruption of the mitochondrial mass and energy metabolism promotes leukaemia cellular myeloid differentiation. In this study, we showed that acute monocytic leukaemia (AML-M5) cells package mitochondria in microvesicles (MVs) when MVs shed from membranes. Additionally, during myeloid differentiation, we report for the first time that differentiated leukaemia cells release more MVs than monocytic leukaemia cells. Targeting the formation of MVs using a specific inhibitor (Y-27632) restrained myeloid differentiation, suggesting that the increased release level of MVs plays an important role in regulating myeloid differentiation. Furthermore, the intracellular mitochondria and ATP levels were decreased after leukaemia cells overcame the differentiation blockade. Moreover, rotenone, which is used to inhibit the respiratory chain and ATP production, had a strong effect on myeloid differentiation in monocytic leukaemia cells. Collectively, these studies uncovered the relationship between mitochondrial function and myeloid differentiation and may provide more insight into the diagnosis and treatment of AML.
    Keywords:  ATP; Acute monocytic leukaemia; Cell differentiation; Microvesicles; Mitochondria
  7. Elife. 2020 Aug 07. pii: e57814. [Epub ahead of print]9
      Mitochondria are dynamic organelles that must precisely control their protein composition according to cellular energy demand. Although nuclear-encoded mRNAs can be localized to the mitochondrial surface, the importance of this localization is unclear. As yeast switch to respiratory metabolism, there is an increase in the fraction of the cytoplasm that is mitochondrial. Our data point to this change in mitochondrial volume fraction increasing the localization of certain nuclear-encoded mRNAs to the surface of the mitochondria. We show that mitochondrial mRNA localization is necessary and sufficient to increase protein production to levels required during respiratory growth. Furthermore, we find that ribosome stalling impacts mRNA sensitivity to mitochondrial volume fraction and counterintuitively leads to enhanced protein synthesis by increasing mRNA localization to mitochondria. This points to a mechanism by which cells are able to use translation elongation and the geometric constraints of the cell to fine-tune organelle-specific gene expression through mRNA localization.
    Keywords:  S. cerevisiae; cell biology; chromosomes; gene expression; mRNA localization; mitochondria; protein synthesis
  8. Aging Cell. 2020 Aug 03. e13206
      Mammals' aging is correlated with the accumulation of somatic heteroplasmic mitochondrial DNA (mtDNA) mutations. Whether and how aging accumulated mtDNA mutations modulate fertility remains unknown. Here, we analyzed oocyte quality of young (≤30 years old) and elder (≥38 years old) female patients and show the elder group had lower blastocyst formation rate and more mtDNA point mutations in oocytes. To test the causal role of mtDNA point mutations on infertility, we used polymerase gamma (POLG) mutator mice. We show that mtDNA mutation levels inversely correlate with fertility, interestingly mainly affecting not male but female fertility. mtDNA mutations decrease female mice's fertility by reducing ovarian primordial and mature follicles. Mechanistically, accumulation of mtDNA mutations decreases fertility by impairing oocyte's NADH/NAD+ redox state, which could be rescued by nicotinamide mononucleotide treatment. For the first time, we answer the fundamental question of the causal effect of age-accumulated mtDNA mutations on fertility and its sex dependence, and show its distinct metabolic controlling mechanism.
    Keywords:  aging; fertility; mitochondria; mitochondrial DNA; nicotinamide mononucleotide
  9. Redox Biol. 2020 Jul 05. pii: S2213-2317(20)30835-1. [Epub ahead of print] 101630
      The mitochondrial respiratory Complex II (CII) is one of key enzymes of cell energy metabolism, linking the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). CII reversibly oxidizes succinate to fumarate in the TCA cycle and transfers the electrons, produced by this reaction to the membrane quinone pool, providing ubiquinol QH2 to ETC. CII is also known as a generator of reactive oxygen species (ROS). It was shown experimentally that succinate can serve as not only a substrate in the forward succinate-quinone oxidoreductase (SQR) direction, but also an enzyme activator. Molecular and kinetic mechanisms of this property of CII are still unclear. In order to account for activation of CII by succinate in the forward SQR direction, we developed and analyzed a computational mechanistic model of electron transfer and ROS formation in CII. It was found that re-binding of succinate to the unoccupied dicarboxylate binding site when FAD is reduced with subsequent oxidation of FADH2 creates a positive feedback loop in the succinate oxidation. The model predicts that this positive feedback can result in hysteresis and bistable switches in SQR activity and ROS production in CII. This requires that the rate constant of re-binding of succinate has to be higher than the rate constant of the initial succinate binding to the active center when FAD is oxidized. Hysteresis and bistability in the SQR activity and ROS production in CII can play an important physiological role. In the presence of hysteresis with two stable branches with high and low SQR activity, high SQR activity is maintained even with a very strong drop in the succinate concentration, which may be necessary in the process of cell functioning in stressful situations. For the same reason, a high stationary rate of ROS production in CII can be maintained at low succinate concentrations.
    Keywords:  Bistability; Complex II; Computational model; Hysteresis; Reactive oxygen species (ROS)
  10. Redox Biol. 2020 Jul 23. pii: S2213-2317(20)30857-0. [Epub ahead of print]36 101652
      Alterations in ROS metabolism and redox signaling are often observed in cancer cells and play a significant role in tumor development and drug resistance. However, the mechanisms by which redox alterations impact cellular sensitivity to anticancer drugs remain elusive. Here we have identified the mitochondrial isoform of thioredoxin reductase 3 (mtTXNRD3), through RT-PCR microarray screen, as a key molecule that confers drug resistance to sorafenib and other clinical anticancer agents. High expression of mtTXNRD3 is detected in drug-resistant leukemia and hepatocellular carcinoma cells associated with significant metabolic alterations manifested by low mitochondrial respiration and high glycolysis. Mechanistically, high mtTXNRD3 activity keeps the mitochondrial thioredoxin2 (Trx2) in a reduced stage that in turn stabilizes several key survival molecules including HK2, Bcl-XL, Bcl-2, and MCL-1, leading to increased cell survival and drug resistance. Pharmacological inhibition of thioredoxin reductase by auranofin effectively overcomes such drug resistance in vitro and in vivo, suggesting that targeting this redox mechanism may be a feasible strategy to treat drug-resistant cancer.
    Keywords:  Auranofin; Drug resistance; Mitochondria; Redox modulation; Sorafenib; TXNRD3
  11. Redox Biol. 2020 Jul 23. pii: S2213-2317(20)30855-7. [Epub ahead of print]36 101650
      Endothelial dysfunction is a critical, initiating step in the development of hypertension (HTN) and mitochondrial reactive oxygen species (ROS) are important contributors to endothelial dysfunction. Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the nicotinamide nucleotide transhydrogenase (Nnt) gene that are associated with endothelial dysfunction and increased risk for HTN. NNT is emerging as an important enzyme that regulates mitochondrial NADPH levels and mitochondrial redox balance by supporting the thiol dependent peroxidase systems in the mitochondria. We have previously shown that the absence of NNT in C57Bl/6J animals promotes a more severe hypertensive phenotype through reductions in •NO and endothelial dependent vessel dilation. However, the impact of NNT on human endothelial cell function remains unclear. We utilized NNT directed shRNA in human aortic endothelial cells to test the hypothesis that NNT critically regulates mitochondrial redox balance and endothelial function in response to angiotensin II (Ang II). We demonstrate that NNT expression and activity are elevated in response to the mitochondrial dysfunction and oxidative stress associated with Ang II treatment. Knockdown of NNT led to a significant elevation of mitochondrial ROS production and impaired glutathione peroxidase and glutathione reductase activities associated with a reduction in the NADPH/NADP+ ratio. Loss of NNT also promoted mitochondrial dysfunction, disruption of the mitochondrial membrane potential, and impaired ATP production in response to Ang II. Finally, we observed that, while the loss of NNT augmented eNOS phosphorylation at Ser1177, neither eNOS activity nor nitric oxide production were similarly increased. The results from these studies clearly demonstrate that NNT is critical for the maintenance of mitochondrial redox balance and mitochondrial function. Loss of NNT and disruption of redox balance leads to oxidative stress that compromises eNOS activity that could have a profound effect on the endothelium dependent regulation of vascular tone.
    Keywords:  Angiotensin II; Mitochondria; NNT; Reactive oxygen species
  12. Nat Struct Mol Biol. 2020 Aug 03.
      Mitochondrial complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from ubiquinone reduction by NADH to drive protons across the energy-transducing inner membrane. Recent cryo-EM analyses of mammalian and yeast complex I have revolutionized structural and mechanistic knowledge and defined structures in different functional states. Here, we describe a 2.7-Å-resolution structure of the 42-subunit complex I from the yeast Yarrowia lipolytica containing 275 structured water molecules. We identify a proton-relay pathway for ubiquinone reduction and water molecules that connect mechanistically crucial elements and constitute proton-translocation pathways through the membrane. By comparison with known structures, we deconvolute structural changes governing the mammalian 'deactive transition' (relevant to ischemia-reperfusion injury) and their effects on the ubiquinone-binding site and a connected cavity in ND1. Our structure thus provides important insights into catalysis by this enigmatic respiratory machine.
  13. Nat Metab. 2020 Aug 03.
      Cancer cells have high demands for non-essential amino acids (NEAAs), which are precursors for anabolic and antioxidant pathways that support cell survival and proliferation. It is well-established that cancer cells consume the NEAA cysteine, and that cysteine deprivation can induce cell death; however, the specific factors governing acute sensitivity to cysteine starvation are poorly characterized. Here, we show that that neither expression of enzymes for cysteine synthesis nor availability of the primary precursor methionine correlated with acute sensitivity to cysteine starvation. We observed a strong correlation between efflux of the methionine-derived metabolite methylthioadenosine (MTA) and sensitivity to cysteine starvation. MTA efflux results from genetic deletion of methylthioadenosine phosphorylase (MTAP), which is frequently deleted in cancers. We show that MTAP loss upregulates polyamine metabolism which, concurrently with cysteine withdrawal, promotes elevated reactive oxygen species and prevents cell survival. Our results reveal an unexplored metabolic weakness at the intersection of polyamine and cysteine metabolism.
  14. Biochim Biophys Acta Mol Cell Res. 2020 Aug 04. pii: S0167-4889(20)30173-7. [Epub ahead of print] 118815
      Regulation of metabolism is emerging as a major output of circadian clock circuitry in mammals. Accordingly, mitochondrial oxidative metabolism undergoes both in vivo and in vitro daily oscillatory activities. In the present study we show that both glycolysis and mitochondrial oxygen consumption display a similar time-resolved rhythmic activity in synchronized HepG2 cell cultures, which translates in overall bioenergetic changes as documented by measurement of the ATP level. Treatment of synchronized cells with specific metabolic inhibitors unveiled pyruvate as a major source of reducing equivalents to the respiratory chain with its oxidation driven by the rhythmic (de)phosphorylation of pyruvate dehydrogenase. Further investigation enabled to causally link the autonomous cadenced mitochondrial respiration to a synchronous increase of the mitochondrial Ca2+. The rhythmic change of the mitochondrial respiration was dampened by inhibitors of the mitochondrial Ca2+ uniporter as well as of the ryanodine receptor Ca2+ channel or the ADPR cyclase, indicating that the mitochondrial Ca2+ influx originated from the ER store, likely at contact sites with the mitochondrial compartment. Notably, blockage of the mitochondrial Ca2+ influx resulted in deregulation of the expression of canonical clock genes such as BMALl1, CLOCK, NR1D1. All together our findings unveil a hitherto unexplored function of Ca2+-mediated signaling in time keeping the mitochondrial metabolism and in its feed-back modulation of the circadian clockwork.
    Keywords:  Circadian clock-genes; Inter-organelle communication; Mitochondria; Mitochondrial calcium signaling; Oxidative phosphorylation; Pyruvate dehydrogenase
  15. Mitochondrion. 2020 Jul 29. pii: S1567-7249(20)30167-7. [Epub ahead of print]
      The aim of the study was to evaluate the interplay between mitochondrial respiration and H2O2 release during the transition from basal non-phosphorylating to maximal phosphorylating states. We conducted a large scale comparative study of mitochondrial oxygen consumption, H2O2 release and electron leak (% H2O2/O) in skeletal muscle mitochondria isolated from mammal species ranging from 7 g to 500 kg. Mitochondrial fluxes were measured at different steady state rates in presence of pyruvate, malate, and succinate as respiratory substrates. Every species exhibited a burst of H2O2 release from skeletal muscle mitochondria at a low rate of oxidative phosphorylation, essentially once the activity of mitochondrial oxidative phosphorylation reached 26% of the maximal respiration. This threshold for ROS generation thus appears as a general characteristic of skeletal muscle mitochondria in mammals. These findings may have implications in situations promoting succinate accumulation within mitochondria, such as ischemia or hypoxia.
    Keywords:  Allometry; Bioenergetics; Oxidative phosphorylation; Radical oxygen species; Skeletal muscle
  16. Front Cell Dev Biol. 2020 ;8 617
      Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4-4.5, improving the resolution to 60-70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria.
    Keywords:  Expansion microscopy; cristae; mitochondria; structured illumination microscope; ultrastructure
  17. Stem Cells Transl Med. 2020 Aug 05.
      The biological function of most mitochondrial proteases has not been well characterized. Moreover, most of the available information on the normal function of these proteases has been derived from studies in model organisms. Recently, the mitochondrial proteases caseinolytic protease P (CLPP) and neurolysin (NLN) have been identified as therapeutic targets in acute myeloid leukemia (AML). Both proteases are overexpressed in approximately 40% of AML patients. Mechanistically, CLPP and NLN maintain the integrity of the mitochondrial respiratory chain: CLPP cleaves defective respiratory chain proteins, while NLN promotes the formation of respiratory chain supercomplexes. In this review, we highlight the functional consequences of inhibiting and activating mitochondrial proteases and discuss their potential as therapeutic targets in AML.
  18. Free Radic Biol Med. 2020 Jul 29. pii: S0891-5849(20)31145-X. [Epub ahead of print]
      The therapeutic options for castration resistance prostate cancer (CRPC) are still limited. Natural bioactive compounds were shown to possess pro-death properties in different tumors. We previously reported that δ-tocotrienol (δ-TT) induces apoptosis, paraptosis and autophagy in CRPC cells. Here, we investigated whether δ-TT might exert its activity by impairing mitochondrial functions. We demonstrated that, in PC3 and DU145 cells, δ-TT impairs mitochondrial respiration and structural dynamics. In both cell lines, δ-TT triggers mitochondrial Ca2+ and ROS overload. In PC3 cells, both Ca2+ and ROS mediate the δ-TT-related anticancer activities (decrease of cell viability, apoptosis, paraptosis, autophagy and mitophagy). As expected, in autophagy-defective DU145 cells, Ca2+ overload was involved in δ-TT-induced pro-death effects but not in autophagy and mitophagy. In this cell line, we also demonstrated that ROS overload is not involved in the anticancer activities of δ-TT, supporting a low susceptibility of these cells to ROS-related oxidative stress. Taken together, these data demonstrate that, in CRPC cells, δ-TT triggers cell death by inducing mitochondrial functional and structural impairments, providing novel mechanistic insights in its antitumor activity.
    Keywords:  Ca(2+) overload; Prostate cancer cells; ROS generation; mitochondrial dysfunction; mitophagy; δ-tocotrienol
  19. Nat Commun. 2020 Aug 06. 11(1): 3904
      A major challenge in chemotherapy is chemotherapy resistance in cells lacking p53. Here we demonstrate that NIP30, an inhibitor of the oncogenic REGγ-proteasome, attenuates cancer cell growth and sensitizes p53-compromised cells to chemotherapeutic agents. NIP30 acts by binding to REGγ via an evolutionarily-conserved serine-rich domain with 4-serine phosphorylation. We find the cyclin-dependent phosphatase CDC25A is a key regulator for NIP30 phosphorylation and modulation of REGγ activity during the cell cycle or after DNA damage. We validate CDC25A-NIP30-REGγ mediated regulation of the REGγ target protein p21 in vivo using p53-/- and p53/REGγ double-deficient mice. Moreover, Phosphor-NIP30 mimetics significantly increase the growth inhibitory effect of chemotherapeutic agents in vitro and in vivo. Given that NIP30 is frequently mutated in the TCGA cancer database, our results provide insight into the regulatory pathway controlling the REGγ-proteasome in carcinogenesis and offer a novel approach to drug-resistant cancer therapy.
  20. iScience. 2020 Jul 20. pii: S2589-0042(20)30579-4. [Epub ahead of print]23(8): 101391
      The relationship between heme metabolism and angiogenesis is poorly understood. The final synthesis of heme occurs in mitochondria, where ferrochelatase (FECH) inserts Fe2+ into protoporphyrin IX to produce proto-heme IX. We previously showed that FECH inhibition is antiangiogenic in human retinal microvascular endothelial cells (HRECs) and in animal models of ocular neovascularization. In the present study, we sought to understand the mechanism of how FECH and thus heme is involved in endothelial cell function. Mitochondria in endothelial cells had several defects in function after heme inhibition. FECH loss changed the shape and mass of mitochondria and led to significant oxidative stress. Oxidative phosphorylation and mitochondrial Complex IV were decreased in HRECs and in murine retina ex vivo after heme depletion. Supplementation with heme partially rescued phenotypes of FECH blockade. These findings provide an unexpected link between mitochondrial heme metabolism and angiogenesis.
    Keywords:  Cell Biology; Developmental Genetics; Physiology
  21. Toxics. 2020 Jul 29. pii: E50. [Epub ahead of print]8(3):
      Hexavalent chromium (Cr(VI)) pollution is a severe public health problem in the world. Although it is believed that mitochondrial fragmentation is a common phenomenon in apoptosis, whether excessive fission is crucial for apoptosis remains controversial. We previously confirmed that Cr(VI) mainly targeted mitochondrial respiratory chain complex I (MRCC I) to induce reactive oxygen species (ROS)-mediated apoptosis, but the related mechanism was unclear. In this study, we found Cr(VI) targeted MRCC I to induce ROS accumulation and triggered mitochondria-related cytotoxicity. Cr(VI)-induced cytotoxicity was alleviated by pretreatment of Glutamate/malate (Glu/Mal; MRCC I substrates), and was aggravated by cotreatment of rotenone (ROT; MRCC I inhibitor). Cr(VI) induced excessive mitochondrial fragmentation and mitochondrial dynamin-related protein 1 (Drp1) translocation, the application of Drp1-siRNA alleviated Cr(VI)-induced apoptosis. The cytotoxicity in the Drp1-si plus Cr(VI) treatment group was alleviated by the application of Glu/Mal, and was aggravated by the application of ROT. Drp1 siRNA promoted the inhibition of Glu/Mal on Cr(VI)-induced cytotoxicity, and alleviated the aggravation of ROT on Cr(VI)-induced cytotoxicity. Taken together, Cr(VI)-induced Drp1 modulation was dependent on MRCC I inhibition-mediated ROS production, and Drp1-mediated mitochondrial fragmentation contributed to Cr(VI)-induced MRCC I-dependent cytotoxicity, which provided the experimental basis for further elucidating Cr(VI)-induced cytotoxicity.
    Keywords:  dynamin-related protein 1 (Drp1); hexavalent chromium [Cr(VI)]; mitochondrial fragmentation; mitochondrial respiratory chain complex I (MRCC I); reactive oxygen species (ROS)
  22. Front Oncol. 2020 ;10 1177
      Molecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations. In this context, the use of small molecules as modulators of protein functions has proven relevant for the investigation of a number of biomolecular systems. Herein, we focus on the functions, interactions and signaling pathways of the HSP90 family of molecular chaperones as possible targets for the discovery of new molecular entities aimed at tuning their activity and interactions. HSP90 and its mitochondrial paralog, TRAP1, regulate the activity of crucial metabolic circuitries, making cells capable of efficiently using available energy sources, with relevant implications both in healthy conditions and in a variety of disease states and especially cancer. The design of small-molecules targeting the chaperone cycle of HSP90 and able to inhibit or stimulate the activity of the protein can provide opportunities to finely dissect their biochemical activities and to obtain lead compounds to develop novel, mechanism-based drugs.
    Keywords:  ATP-competitive inhibitors; HSP90; TRAP1; allosteric inhibitor; anti-neoplastic strategies; chaperones; mitochondria; tumor metabolism
  23. Int J Mol Sci. 2020 Aug 05. pii: E5598. [Epub ahead of print]21(16):
      As an essential organelle in nucleated eukaryotic cells, mitochondria play a central role in energy metabolism, maintenance of redox balance, and regulation of apoptosis. Mitochondrial dysfunction, either due to the TCA cycle enzyme defects, mitochondrial DNA genetic mutations, defective mitochondrial electron transport chain, oxidative stress, or aberrant oncogene and tumor suppressor signaling, has been observed in a wide spectrum of human cancers. In this review, we summarize mitochondrial dysfunction induced by these alterations that promote human cancers.
    Keywords:  TCA cycle; cancers; dysfunction; electron transport chain; mitochondria; oncogene; oxidative phosphorylation; tumor suppressor
  24. Can J Physiol Pharmacol. 2020 Aug 07. 1-9
      The aim of this study was to determine new insights into the molecular mechanisms involved in the antiproliferative action of menadione + calcitriol (MEN+D) on MCF-7 cells. After 24 h, MEN+D inhibited the cell growth but was not observed with each single treatment. The combined drugs reduced the mitochondrial respiration at that time, as judged by an increase in the proton leak and a decrease in the ATP generation and coupling efficiency. At longer times, 48 or 96 h, either D or MEN reduced the proliferation, but the effect was higher when both drugs were used together. The combined treatment increased the superoxide anion ([Formula: see text]) and nitric oxide (NO•) contents as well as acidic vesicular organelles (AVOs) formation. The percentage of cells showing the lower mitochondrial membrane potential (ΔΨm) was highly increased by the combined therapy. LC3-II protein expression was enhanced by any treatment. In conclusion, the antiproliferative action of MEN+D involves oxidative/nitrosative stress, mitochondrial alteration, and autophagy. This combined therapy could be useful to treat breast cancer cells because it inhibits multiple oncogenic pathways more effectively than each single agent.
    Keywords:  autophagie; autophagy; breast cancer; calcitriol; cancer du sein; menadione; mitochondrial respiration; ménadione; oxidative and nitrosative stress; respiration mitochondriale; stress oxydatif et nitrosatif
  25. Cell Rep. 2020 Aug 04. pii: S2211-1247(20)30974-8. [Epub ahead of print]32(5): 107989
      Amyotrophic lateral sclerosis (ALS) manifests pathological changes in motor neurons and various other cell types. Compared to motor neurons, the contribution of the other cell types to the ALS phenotypes is understudied. G4C2 repeat expansion in C9ORF72 is the most common genetic cause of ALS along with frontotemporal dementia (C9-ALS/FTD), with increasing evidence supporting repeat-encoded poly(GR) in disease pathogenesis. Here, we show in Drosophila muscle that poly(GR) enters mitochondria and interacts with components of the Mitochondrial Contact Site and Cristae Organizing System (MICOS), altering MICOS dynamics and intra-subunit interactions. This impairs mitochondrial inner membrane structure, ion homeostasis, mitochondrial metabolism, and muscle integrity. Similar mitochondrial defects are observed in patient fibroblasts. Genetic manipulation of MICOS components or pharmacological restoration of ion homeostasis with nigericin effectively rescue the mitochondrial pathology and disease phenotypes in both systems. These results implicate MICOS-regulated ion homeostasis in C9-ALS pathogenesis and suggest potential new therapeutic strategies.
    Keywords:  C9-ALS/FTD; DPR; K(+)/H(+) antiporter; MICOS; Mic27/Apool; Opa1; cristae junction; mitochondrial K(+) homeostasis; muscle; nigericin
  26. Cardiovasc Res. 2020 Aug 07. pii: cvaa148. [Epub ahead of print]
      AIMS: Succinate accumulates several-fold in the ischemic heart and is then rapidly oxidised upon reperfusion, contributing to reactive oxygen species (ROS) production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known.METHODS AND RESULTS: To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart.
    CONCLUSION: Succinate release upon reperfusion of the ischemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischemia. These findings will allow the signalling interaction between succinate released from reperfused ischemic myocardium and SUCNR1 to be explored.
    TRANSLATIONAL PERSPECTIVES: In this study we demonstrate that succinate efflux upon reperfusion of the ischemic myocardium is mediated by the monocarboxylate transporter 1 (MCT1) and is enhanced by the ischemic acidification of the heart. These findings are an important advance in understanding how succinate is released upon reperfusion of ischemic organs. While this pathway is therapeutically tractable, greater understanding of the effects of succinate release is required before exploring this possibility.
    Keywords:  Ischemia/reperfusion injury; MCT1 transporter; Mitochondria; SUCNR1; Succinate
  27. Nat Cell Biol. 2020 Aug;22(8): 973-985
      Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
  28. Redox Biol. 2020 Jul 26. pii: S2213-2317(20)30865-X. [Epub ahead of print]36 101660
      Mitochondria are highly dynamic organelles that constantly undergo fission and fusion events to adapt to changes in the cellular environment. Aberrant mitochondrial fission has been associated with several types of cardiovascular dysfunction; inhibition of pathologically aberrant mitochondrial fission has been shown to be cardioprotective. Pathological fission is mediated by the excessive activation of GTPase dynamin-related protein 1 (Drp1), making it an attractive therapeutic target in numerous cardiovascular diseases. Mitochondrial division inhibitor (mdivi-1) is widely used small molecule reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate injury. The purpose of our study was to understand the pleiotropic effects of mdivi-1 on mitochondrial dynamics, mitochondrial respiration, electron transport activities, and macro-autophagy. In this study, we found that mdivi-1 treatment decreased Drp1 expression, proteolytically cleaved L-OPA1, and altered the expression of OXPHOS complex proteins, resulting in increased superoxide production. The altered expression of OXPHOS complex proteins may be directly associated with decreased Drp1 expression, as Drp1 siRNA knockdown in cardiomyocytes showed similar effects. Results from an autophagy flux assay showed that mdivi-1 induced impaired autophagy flux that could be restored by Atg7 overexpression, suggesting that mdivi-1 mediated inhibition of macro-autophagy in cardiomyocytes. Treatment with mdivi-1 resulted in increased expression of p62, which is required for Atg7 overexpression-induced rescue of mdivi-1-mediated impaired autophagy flux. In addition, mdivi-1-dependent proteolytic processing of L-OPA1 was associated with increased mitochondrial superoxide production and altered expression of mitochondrial serine/proteases. Overall, the novel pleiotropic effect of mdivi-1 in cardiomyocytes included proteolytically cleaved L-OPA1, altered expression of OXPHOS complex proteins, and increased superoxide production, which together resulted in defects in mitochondrial respiration and inhibition of macro-autophagy.
    Keywords:  Macro-autophagy; Mitochondria fission; Mitochondrial dysfunction; Mitochondrial proteases; mdivi-1
  29. Cell Metab. 2020 Jul 30. pii: S1550-4131(20)30367-3. [Epub ahead of print]
      Cancer relapse begins when malignant cells pass through the extreme metabolic bottleneck of stress from chemotherapy and the byproducts of the massive cell death in the surrounding region. In acute myeloid leukemia, complete remissions are common, but few are cured. We tracked leukemia cells in vivo, defined the moment of maximal response following chemotherapy, captured persisting cells, and conducted unbiased metabolomics, revealing a metabolite profile distinct from the pre-chemo growth or post-chemo relapse phase. Persisting cells used glutamine in a distinctive manner, preferentially fueling pyrimidine and glutathione generation, but not the mitochondrial tricarboxylic acid cycle. Notably, malignant cell pyrimidine synthesis also required aspartate provided by specific bone marrow stromal cells. Blunting glutamine metabolism or pyrimidine synthesis selected against residual leukemia-initiating cells and improved survival in leukemia mouse models and patient-derived xenografts. We propose that timed cell-intrinsic or niche-focused metabolic disruption can exploit a transient vulnerability and induce metabolic collapse in cancer cells to overcome chemoresistance.
    Keywords:  acute myeloid leukemia; aspartate; bone marrow niche; cell metabolism; chemotherapy; glutamine; mouse models; patient-derived xenografts; pyrimidine synthesis; tumor microenvironment
  30. BMC Biol. 2020 Aug 06. 18(1): 96
      BACKGROUND: The mitochondrial intermembrane space (IMS) is home to proteins fulfilling numerous essential cellular processes, particularly in metabolism and mitochondrial function. All IMS proteins are nuclear encoded and synthesized in the cytosol and must therefore be correctly targeted and transported to the IMS, either through mitochondrial targeting sequences or conserved cysteines and the mitochondrial disulfide relay system. The mitochondrial oxidoreductase MIA40, which catalyzes disulfide formation in the IMS, is imported by the combined action of the protein AIFM1 and MIA40 itself. Here, we characterized the function of the conserved highly negatively charged C-terminal region of human MIA40.RESULTS: We demonstrate that the C-terminal region is critical during posttranslational mitochondrial import of MIA40, but is dispensable for MIA40 redox function in vitro and in intact cells. The C-terminal negatively charged region of MIA40 slowed import into mitochondria, which occurred with a half-time as slow as 90 min. During this time, the MIA40 precursor persisted in the cytosol in an unfolded state, and the C-terminal negatively charged region served in protecting MIA40 from proteasomal degradation. This stabilizing property of the MIA40 C-terminal region could also be conferred to a different mitochondrial precursor protein, COX19.
    CONCLUSIONS: Our data suggest that the MIA40 precursor contains the stabilizing information to allow for postranslational import of sufficient amounts of MIA40 for full functionality of the essential disulfide relay. We thereby provide for the first time mechanistic insights into the determinants controlling cytosolic surveillance of IMS precursor proteins.
    Keywords:  Disulfide relay; MIA40; Mitochondrial import; Mitochondrial precursor; Negatively charged C-terminus; Proteasomal degradation
  31. J Inherit Metab Dis. 2020 Aug 02.
      Post-translational protein modifications derived from metabolic intermediates, such as acyl-CoAs, have been shown to regulate mitochondrial function. Patients with an inborn a genetic defect in the propionyl-CoA carboxylase (PCC) gene clinically present symptoms related to mitochondrial disorders and are characterised by decreased mitochondrial respiration. Since propionyl-CoA accumulates in PCC deficient patients and protein propionylation can be driven by the level of propionyl-CoA, we hypothesised that protein propionylation could play a role in the pathology of the disease. Indeed, we identified increased protein propionylation due to pathologic propionyl-CoA accumulation in patient-derived fibroblasts and this was accompanied by defective mitochondrial respiration, as was shown by a decrease in complex I-driven respiration. To mimic pathological protein propionylation levels, we exposed cultured fibroblasts, Fao liver cells and C2C12 muscle myotubes to propionate levels that are typically found in these patients. This induced a global increase in protein propionylation and histone protein propionylation and was also accompanied by a decrease in mitochondrial respiration in liver and fibroblasts. However, in C2C12 myotubes propionate exposure did not decrease mitochondrial respiration, possibly due to differences in propionyl-CoA metabolism as compared to the liver. Therefore, protein propionylation could contribute to the pathology in these patients, especially in the liver, and could therefore be an interesting target to pursue in the treatment of this metabolic disease. This article is protected by copyright. All rights reserved.
    Keywords:  Mitochondria; Post-translational protein modifications; Propionic acidemia; Propionylation; oxidative metabolism
  32. Cell Metab. 2020 Aug 04. pii: S1550-4131(20)30363-6. [Epub ahead of print]32(2): 287-300.e7
      Stimulation of brown adipose tissue (BAT) thermogenesis in humans has emerged as an attractive target to improve metabolic health. Pharmacological stimulations targeting the β3-adrenergic receptor (β3-AR), the adrenergic receptor believed to mediate BAT thermogenesis, have historically performed poorly in human clinical trials. Here we report that, in contrast to rodents, human BAT thermogenesis is not mediated by the stimulation of β3-AR. Oral administration of the β3-AR agonist mirabegron only elicited increases in BAT thermogenesis when ingested at the maximal allowable dose. This led to off-target binding to β1-AR and β2-AR, thereby increasing cardiovascular responses and white adipose tissue lipolysis, respectively. ADRB2 was co-expressed with UCP1 in human brown adipocytes. Pharmacological stimulation and inhibition of the β2-AR as well as knockdown of ADRB1, ADRB2, or ADRB3 in human brown adipocytes all confirmed that BAT lipolysis and thermogenesis occur through β2-AR signaling in humans (ClinicalTrials.govNCT02811289).
    Keywords:  brown adipocyte; brown adipose tissue; cold-induced thermogenesis; energy metabolism; mirabegron; positron emission tomography; β(2)-adrenergic receptor
  33. Elife. 2020 Aug 07. pii: e60513. [Epub ahead of print]9
      Mitochondrial Ca2+ uptake is mediated by an inner mitochondrial membrane protein called the mitochondrial calcium uniporter. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+ dependent manner. Here we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.
    Keywords:  biochemistry; chemical biology; human; molecular biophysics; structural biology
  34. Int J Mol Sci. 2020 Jul 30. pii: E5416. [Epub ahead of print]21(15):
      Despite dramatic progress in cancer diagnosis and treatment, the five-year survival rate of oral squamous cell carcinoma (OSCC) is still only about 50%. Thus, the need for elucidating the molecular mechanisms underlying OSCC is urgent. We previously identified the peroxidasin gene (PXDN) as one of several novel genes associated with OSCC. Although the PXDN protein is known to act as a tumor-promoting factor associated with the Warburg effect, its function and role in OSCC are poorly understood. In this study, we investigated the expression, function, and relationship with the Warburg effect of PXDN in OSCC. In immunohistochemical analysis of OSCC specimens, we observed that elevated PXDN expression correlated with lymph node metastasis and a diffuse invasion pattern. High PXDN expression was confirmed as an independent predictor of poor prognosis by multivariate analysis. The PXDN expression level correlated positively with that of pyruvate kinase (PKM2) and heme oxygenase-1 (HMOX1) and with lactate and ATP production. No relationship between PXDN expression and mitochondrial activation was observed, and PXDN expression correlated inversely with reactive oxygen species (ROS) production. These results suggest that PXDN might be a tumor progression factor causing a Warburg-like effect in OSCC.
    Keywords:  PXDN; invasion; nodal metastasis; oral cancer; prognosis
  35. Pharmacol Res. 2020 Jul 30. pii: S1043-6618(20)31405-5. [Epub ahead of print] 105097
      Mitochondrial autophagy is affected in many diseases. In the past few years, the multiple-steps process of selective degradation of mitochondria has been dissected in details by combining outcomes from different approaches. Perhaps one of the most rigorous methods to clearly visualise mitochondria undergoing autophagic engulfment and degradation, is transmission electron microscopy (TEM). In this opinion paper, we want to give a brief summary of the mitophagic process, and by which means mitophagy can be addressed, including TEM analysis. We will report examples of autophagy and mitophagy-related TEM images, and discuss how to decipher the different steps of the mitophagic process by routine TEM. In our opinion, this technique can be used as a powerful confirmatory approach for mitochondrial autophagy, and can provide details of the organelle fate throughout the course of mitophagy with no substantial sample manipulation.
    Keywords:  Autophagy; Mitophagy; Transmission Electron Microscopy (TEM)
  36. Mol Cell Biochem. 2020 Aug 07.
      Ionizing radiation induces apoptosis in human Molt-4 leukemia cells in a p53-dependent manner. The tumor suppressor p53 stimulates various downstream targets that presumably trigger, individually or in concert, de novo ceramide synthesis and intrinsic apoptosis via mitochondrial outer membrane permeabilization (MOMP). Among these targets, BH3-only protein Noxa was found to be promptly activated by p53 prior to ceramide accumulation and apoptosis in response to irradiation. To evaluate the relation between Noxa and ceramide in irradiation-induced apoptosis, Noxa was silenced in Molt-4 cells and apoptosis, p53 expression, and ceramide accumulation were assessed in response to irradiation. In the absence of Noxa, irradiation of Molt-4 cells still induced apoptosis in a p53-dependent manner however ceramide levels decreased significantly although they remained higher than untreated control. Upon irradiation, Noxa was found to translocate to the mitochondria where endogenous ceramide accumulation was observed. In contrast, overexpression of Bcl-2, another mitochondrial protein, in Molt-4 cells abolished the endogenous ceramide accumulation and apoptosis. In irradiation-induced, p53-dependent pathways of apoptosis, the pro-apoptotic Noxa represents one of several, yet to be identified, pathways simultaneously triggered by p53 to produce mitochondrial ceramide accumulation and apoptosis. In contrast, Bcl-2 functions as a broader inhibitor of both ceramide accumulation and apoptosis. Altogether, these results indicate that members of the Bcl-2 family differentially regulate ceramide accumulation and reveal the existence of crosstalk between Bcl-2 family members and ceramide in mediating p53-dependent apoptosis in Molt-4 human T-cell leukemia.
    Keywords:  Bcl-2; Cancer; Ceramide; Mitochondrial apoptosis; Noxa; p53
  37. Cancers (Basel). 2020 Aug 05. pii: E2181. [Epub ahead of print]12(8):
      Cancer cells acquire resistance to cytotoxic therapies targeting major survival pathways by adapting their metabolism. The AKT pathway is a major regulator of human pancreatic adenocarcinoma progression and a key pharmacological target. The mechanisms of adaptation to long-term silencing of AKT isoforms of human and mouse pancreatic adenocarcinoma cancer cells were studied. Following silencing, cancer cells remained quiescent for long periods of time, after which they recovered proliferative capacities. Adaptation caused profound proteomic changes largely affecting mitochondrial biogenesis, energy metabolism and acquisition of a number of distinct cancer stem cell (CSC) characteristics depending on the AKT isoform that was silenced. The adaptation to AKT1 silencing drove most de-differentiation and acquisition of stemness through C-MYC down-modulation and NANOG upregulation, which were required for survival of adapted CSCs. The changes associated to adaptation sensitized cancer cells to inhibitors targeting regulators of oxidative respiration and mitochondrial biogenesis. In vivo pharmacological co-inhibition of AKT and mitochondrial metabolism effectively controlled pancreatic adenocarcinoma growth in pre-clinical models.
    Keywords:  AKT; Pancreatic cancer; cancer stem cell
  38. Front Oncol. 2020 ;10 1038
      Resveratrol is a natural polyphenolic compound with multiple biological effects, e.g., proliferation inhibition, anti-oxidation, and neuroprotection. Besides that, studies have shown that resveratrol inhibits tumor growth and migration, as well as epithelial-mesenchymal transition (EMT). However, its molecular mechanisms in tumor progression are not fully understood. Nutrient-deprivation autophagy factor-1 (NAF-1) is mainly found in the endoplasmic reticulum and mitochondrial outer membrane. It is an important genetic locus for regulating oxidative stress and autophagy. The molecular mechanism of NAF-1 in pancreatic cancer is currently unclear. The current study found that NAF-1 is expressed in pancreatic cancer tissue and correlated with the progression of pancreatic cancer. Furthermore, we found that NAF-1 inhibition significantly inhibits the stem cell characteristics and the invasion and migration abilities of pancreatic cancer cells. In a subcutaneous xenograft model of pancreatic cancer in nude mice, resveratrol inhibited the expression of NAF-1, thereby inhibiting tumor growth. Taken together, resveratrol could be an effective anti-tumor drug, and NAF-1 may be a rational therapeutic target.
    Keywords:  NAF-1; cancer stem cells; pancreatic cancer; progression; resveratrol
  39. Org Biomol Chem. 2020 Aug 06.
      The development of protein-based therapeutics faces many challenges, for example, carrier-dependence, safety concerns, endocytosis-dependence, and uncertain in vivo therapeutic outcomes. Small molecules are rarely used for intracellular organelle-targeting and disease tissue-specific carrier-independent delivery of therapeutic proteins. Here, we report that rhodamine B, after modification with proteins, is able to guide carrier-free delivery into mitochondria and tissue-dependent distributions of functional proteins through organic cation transporters (OCTs). The enrichment of the modified catalase in the cancer tissue efficiently suppresses xenograft human lung tumor in mice. This carrier-free delivery platform of proteins may emerge as a simple yet powerful approach for cancer treatment.
  40. Mol Metab. 2020 Jul 29. pii: S2212-8778(20)30129-0. [Epub ahead of print] 101055
      OBJECTIVE: Cholesterol plays a pivotal role in mitochondrial steroidogenesis, membrane structure, and respiration. Mitochondrial membranes are intrinsically low in cholesterol content, and therefore must be replenished with cholesterol from other subcellular membranes. However, the molecular mechanisms underlying mitochondrial cholesterol transport remains poorly understood. The Aster-B gene encodes a cholesterol binding protein recently implicated in cholesterol trafficking from the plasma membrane to the ER. In this study, we investigated the function and underlying mechanism of Aster-B in mediating mitochondrial cholesterol transport.METHODS: CRISPR/Cas9 gene editing was carried out to generate cell lines deficient in Aster-B expression. The effect of Aster-B deficiency on mitochondrial cholesterol transport was examined by both confocal imaging analysis and biochemical assays. Deletion mutational analysis was also carried out to identify the function of a putative mitochondrial targeting sequence (MTS) at the N-terminus of Aster-B for its role in targeting Aster-B to mitochondria and in mediating mitochondrial cholesterol trafficking.
    RESULTS: Ablation of Aster-B impaired cholesterol transport from the ER to mitochondria, leading to a significant decrease in mitochondrial cholesterol content. Aster-B is also required for mitochondrial transport of fatty acids derived from hydrolysis of cholesterol esters. A putative MTS at the N-terminus of Aster-B mediates the mitochondrial cholesterol uptake. Deletion of the MTS or ablation of Arf1 GTPase which is required for mitochondrial translocation of ER proteins prevented mitochondrial cholesterol transport, leading to mitochondrial dysfunction.
    CONCLUSIONS: We identified Aster-B as a key regulator of cholesterol transport from the ER to mitochondria. Aster-B also coordinates mitochondrial cholesterol trafficking with uptake of fatty acids derived from cholesterol ester, implicating the Aster-B protein as a novel regulator of steroidogenesis.
    Keywords:  Arf1; Cholesterol Transport; Fatty Acids; GRAMD1b; Mitochondria
  41. Aging (Albany NY). 2020 Aug 06. 12
      Recent reports have indicated the role of highly expressed methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) enzyme in cancers, showing poor survival; however, detailed mechanistic insight of metabolic functions of MTHFD2 have not been well-defined. Therefore, we aimed to examine the metabolic functions and cellular reprograming potential of MTHFD2 in lung cancer (LCa). In this study, we initially confirmed the expression levels of MTHFD2 in LCa not only in tissue and OncomineTM database, but also at molecular levels. Further, we reprogrammed metabolic activities in these cells through MTHFD2 gene knockdown via lentiviral transduction, and assessed their viability, transformation and self-renewal ability. In vivo tumorigenicity was also evaluated in NOD/SCID mice. Results showed that MTHFD2 was highly expressed in stage-dependent LCa tissues as well in cell lines, A549, H1299 and H441. Cellular viability, transformation and self-renewal abilities were significantly inhibited in MTHFD2-knockdown LCa cell lines. These cells also showed suppressed tumor-initiating ability and reduced tumor size compared to vector controls. Under low oxygen tension, MTHFD2-knockdown groups showed no significant increase in sphere formation, and hence the stemness. Conclusively, the suppressed levels of MTHFD2 is essential for cellular metabolic reprogramming leading to inhibited LCa growth and tumor aggressiveness.
    Keywords:  MTHFD2; lung cancer; oxygen tension; tumorigenicity
  42. Sci Rep. 2020 Aug 03. 10(1): 13065
      Fumarate hydratase (FH) is an enzyme in the tricarboxylic acid (TCA) cycle, biallelic loss-of-function mutations of which are associated with hereditary leiomyomatosis and renal cell cancer. However, how FH defect modulates intracellular metabolic fluxes in human cells has remained unclear. This study aimed to reveal metabolic flux alterations induced by reduced FH activity. We applied 13C metabolic flux analysis (13C-MFA) to an established cell line with diminished FH activity (FHdim) and parental HEK293 cells. FHdim cells showed reduced pyruvate import flux into mitochondria and subsequent TCA cycle fluxes. Interestingly, the diminished FH activity decreased FH flux only by about 20%, suggesting a very low need for FH to maintain the oxidative TCA cycle. Cellular ATP production from the TCA cycle was dominantly suppressed compared with that from glycolysis in FHdim cells. Consistently, FHdim cells exhibited higher glucose dependence for ATP production and higher resistance to an ATP synthase inhibitor. In summary, using FHdim cells we demonstrated that FH defect led to suppressed pyruvate import into mitochondria, followed by downregulated TCA cycle activity and altered ATP production pathway balance from the TCA cycle to glycolysis. We confirmed that 13C-MFA can provide direct and quantitative information on metabolic alterations induced by FH defect.
  43. Cancers (Basel). 2020 Aug 01. pii: E2137. [Epub ahead of print]12(8):
      Apoptotic resistance remains a hallmark of glioblastoma (GBM), the most common primary brain tumor in adults, and a better understanding of this process may result in more efficient treatments. By utilizing chromatin immunoprecipitation with next-generation sequencing (CHIP-seq), we discovered that GBMs harbor a super enhancer around the Mcl-1 locus, a gene that has been known to confer cell death resistance in GBM. We utilized THZ1, a known super-enhancer blocker, and BH3-mimetics, including ABT263, WEHI-539, and ABT199. Combined treatment with BH3-mimetics and THZ1 led to synergistic growth reduction in GBM models. Reduction in cellular viability was accompanied by significant cell death induction with features of apoptosis, including disruption of mitochondrial membrane potential followed by activation of caspases. Mechanistically, THZ1 elicited a profound disruption of the Mcl-1 enhancer region, leading to a sustained suppression of Mcl-1 transcript and protein levels, respectively. Mechanism experiments suggest involvement of Mcl-1 in the cell death elicited by the combination treatment. Finally, the combination treatment of ABT263 and THZ1 resulted in enhanced growth reduction of tumors without induction of detectable toxicity in two patient-derived xenograft models of GBM in vivo. Taken together, these findings suggest that combined epigenetic targeting of Mcl-1 along with Bcl-2/Bcl-xL is potentially therapeutically feasible.
    Keywords:  BH3-mimetics; Mcl1; THZ1; epigenome; non-coding regions; super-enhancer
  44. Nat Metab. 2020 Aug 03.
      The continual supply of ATP to the fundamental cellular processes that underpin skeletal muscle contraction during exercise is essential for sports performance in events lasting seconds to several hours. Because the muscle stores of ATP are small, metabolic pathways must be activated to maintain the required rates of ATP resynthesis. These pathways include phosphocreatine and muscle glycogen breakdown, thus enabling substrate-level phosphorylation ('anaerobic') and oxidative phosphorylation by using reducing equivalents from carbohydrate and fat metabolism ('aerobic'). The relative contribution of these metabolic pathways is primarily determined by the intensity and duration of exercise. For most events at the Olympics, carbohydrate is the primary fuel for anaerobic and aerobic metabolism. Here, we provide an overview of exercise metabolism and the key regulatory mechanisms ensuring that ATP resynthesis is closely matched to the ATP demand of exercise. We also summarize various interventions that target muscle metabolism for ergogenic benefit in athletic events.
  45. Biochim Biophys Acta Mol Cell Res. 2020 Jul 31. pii: S0167-4889(20)30163-4. [Epub ahead of print] 118805
      NEET proteins belong to a highly conserved group of [2Fe-2S] proteins found across all kingdoms of life. Due to their unique [2Fe-2S] cluster structure, they play a key role in the regulation of many different redox and oxidation processes. In eukaryotes, NEET proteins are localized to the mitochondria, ER and the membranes connecting these organelles (MAM), and are involved in the control of multiple processes, ranging from autophagy and apoptosis to ferroptosis, oxidative stress, cell proliferation, redox control and iron and iron-sulfur homeostasis. Through their different functions and interactions with key proteins such as VDAC and Bcl-2, NEET proteins coordinate different mitochondrial, MAM, ER and cytosolic processes and functions and regulate major signaling molecules such as calcium and reactive oxygen species. Owing to their central role in cells, NEET proteins are associated with numerous human maladies including cancer, metabolic diseases, diabetes, obesity, and neurodegenerative diseases. In recent years, a new and exciting role for NEET proteins was uncovered, i.e., the regulation of mitochondrial dynamics and morphology. This new role places NEET proteins at the forefront of studies into cancer and different metabolic diseases, both associated with the regulation of mitochondrial dynamics. Here we review recent studies focused on the evolution, biological role, and structure of NEET proteins, as well as discuss different studies conducted on NEET protein function using transgenic organisms. We further discuss the different strategies used in the development of drugs that target NEET proteins, and link these with the different roles of NEET proteins in cells.
  46. Nat Struct Mol Biol. 2020 Aug;27(8): 687-695
      Mitochondria respond to DNA damage and preserve their own genetic material in a manner distinct from that of the nucleus but that requires organized mito-nuclear communication. Failure to resolve mtDNA breaks leads to mitochondrial dysfunction and affects host cells and tissues. Here, we review the pathways that safeguard mitochondrial genomes and examine the insights gained from studies of cellular and tissue-wide responses to mtDNA damage and mito-nuclear genome incompatibility.
  47. Front Genet. 2020 ;11 762
      There is evidence of a purifying filter acting in the female germline to prevent the expansion of deleterious mutations in the mitochondrial DNA (mtDNA). Given our poor understanding of this filter, here we investigate the competence of the mouse embryo to eliminate dysfunctional mitochondria. Toward that, mitochondria were damaged by photoirradiation of NZB/BINJ zygotes loaded with chloromethyl-X-rosamine (CMXRos). The resultant cytoplasm was then injected into C57BL/6J zygotes to track the levels of NZB/BINJ mtDNA during the preimplantation development. About 30% of NZB/BINJ mtDNA was present after injection, regardless of using photoirradiated or non-photoirradiated cytoplasmic donors. Moreover, injection of photoirradiated-derived cytoplasm did not impact development into blastocysts. However, lower levels of NZB/BINJ mtDNA were present in blastocysts when comparing injection of photoirradiated (24.7% ± 1.43) versus non-photoirradiated (31.4% ± 1.43) cytoplasm. Given that total mtDNA content remained stable between stages (zygotes vs. blastocysts) and treatments (photoirradiated vs. non-photoirradiated), these results indicate that the photoirradiated-derived mtDNA was replaced by recipient mtDNA in blastocysts. Unexpectedly, treatment with rapamycin prevented the drop in NZB/BINJ mtDNA levels associated with injection of photoirradiated cytoplasm. Additionally, analysis of mitochondria-autophagosome colocalization provided no evidence that photoirradiated mitochondria were eliminated by autophagy. In conclusion, our findings give evidence that the mouse embryo is competent to mitigate the levels of damaged mitochondria, which might have implications to the transmission of mtDNA-encoded disease.
    Keywords:  NZB; cytoplasmic transfer; embryo; mitochondria; mitochondrial DNA; mouse; mtDNA; photosensitization
  48. Cell Metab. 2020 Jul 22. pii: S1550-4131(20)30359-4. [Epub ahead of print]
      Regulatory T cells (Tregs) are vital for the maintenance of immune homeostasis, while their dysfunction constitutes a cardinal feature of autoimmunity. Under steady-state conditions, mitochondrial metabolism is critical for Treg function; however, the metabolic adaptations of Tregs during autoimmunity are ill-defined. Herein, we report that elevated mitochondrial oxidative stress and a robust DNA damage response (DDR) associated with cell death occur in Tregs in individuals with autoimmunity. In an experimental autoimmune encephalitis (EAE) mouse model of autoimmunity, we found a Treg dysfunction recapitulating the features of autoimmune Tregs with a prominent mtROS signature. Scavenging of mtROS in Tregs of EAE mice reversed the DDR and prevented Treg death, while attenuating the Th1 and Th17 autoimmune responses. These findings highlight an unrecognized role of mitochondrial oxidative stress in defining Treg fate during autoimmunity, which may facilitate the design of novel immunotherapies for diseases with disturbed immune tolerance.
    Keywords:  DNA damage response; autoimmunity; lysosome; metabolism; mitochondrial oxidative stress; regulatory T cell
  49. Nat Metab. 2020 Aug 03.
      The coordination of nutrient sensing, delivery, uptake and utilization is essential for maintaining cellular, tissue and whole-body homeostasis. Such synchronization can be achieved only if metabolic information is communicated between the cells and tissues of the entire organism. During intense exercise, the metabolic demand of the body can increase approximately 100-fold. Thus, exercise is a physiological state in which intertissue communication is of paramount importance. In this Review, we discuss the physiological processes governing intertissue communication during exercise and the molecules mediating such cross-talk.
  50. Redox Biol. 2020 Aug 01. pii: S2213-2317(20)30862-4. [Epub ahead of print]36 101657
      Metabolic reprogramming is a hallmark of cancer cells. In Waldenstrom Macroglobulinemia (WM), the infiltration of IgM-secreting lymphoplamacytic cells into the bone marrow (BM) could shift the homeostasis of proteins and metabolites towards a permissive niche for tumor growth. Here, we investigated whether alerted metabolic pathways contribute to the pathobiology of WM and whether the cytokine composition of the BM promotes such changes. Metabolomics analysis on WM patients and normal donors' serum samples revealed a total of 75 metabolites that were significantly altered between two groups. While these metabolites belonged to amino acids, glucose, glutathione and lipid metabolism pathways, the highest number of the differentially expressed metabolites belonged to glutathione metabolism. Proteomics analysis and immunohistochemical staining both confirmed the increased protein levels mediating glutathione metabolism, including GCLC, MT1X, QPCT and GPX3. Moreover, treatment with IL-6 and IL-21, cytokines that induce WM cell proliferation and IgM secretion, increased gene expression of the amino acid transporters mediating glutathione metabolism, including ASCT2, SLC7A11 and 4F2HC, indicating that cytokines in the WM BM could modulate glutathione metabolism. Glutathione synthesis inhibition using Buthionine sulphoximine (BSO) significantly reduced WM cells proliferation in vitro, accompanied with decreased NFκB-p65 and MAPK-p38 phosphorylation. Moreover, BSO treatment significantly reduced the tumor growth rate in a WM xenograft model, further highlighting the role of glutathione metabolism in promoting tumor growth and proliferation. In summary, our data highlight a central role for glutathione metabolism in WM pathobiology and indicate that intervening with the metabolic processes could be a potential therapy for WM patients.
    Keywords:  Glutathione; Metabolism; Waldenstrom Macroglobulinemia
  51. Int J Mol Sci. 2020 Jul 31. pii: E5470. [Epub ahead of print]21(15):
      Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) involvement has been established in the oncogenic cell signaling of acute myeloid leukemia (AML) cells and in the crosstalk with their niche. We have shown an expression of NOX subunits in AML cell lines while NOX activity is lacking in the absence of exogenous stimulation. Here, we used AML cell lines as models to investigate the specificity of VAS3947, a current NOX inhibitor. Results demonstrated that VAS3947 induces apoptosis in AML cells independently of its anti-NOX activity. High-performance liquid chromatography (HPLC) and mass spectrometry analyses revealed that VAS3947 thiol alkylates cysteine residues of glutathione (GSH), while also interacting with proteins. Remarkably, VAS3947 decreased detectable GSH in the MV-4-11 cell line, thereby suggesting possible oxidative stress induction. However, a decrease in both cytoplasmic and mitochondrial reactive oxygen species (ROS) levels was observed by flow cytometry without disturbance of mitochondrial mass and membrane potential. Thus, assuming the consequences of VAS3947 treatment on protein structure, we examined its impact on endoplasmic reticulum (ER) stress. An acute unfolded protein response (UPR) was triggered shortly after VAS3947 exposure, through the activation of inositol-requiring enzyme 1α (IRE1α) and PKR-like endoplasmic reticulum kinase (PERK) pathways. Overall, VAS3947 induces apoptosis independently of anti-NOX activity, via UPR activation, mainly due to aggregation and misfolding of proteins.
    Keywords:  NADPH oxidases; VAS3947; cysteine thiol alkylation; endoplasmic reticulum; leukemia; oxidative stress; unfolded protein response
  52. Pancreatology. 2020 Jul 25. pii: S1424-3903(20)30226-X. [Epub ahead of print]
      BACKGROUND/OBJECTIVES: 8-Hydroxydeoxyguanosine (8-OHdG) is an indicator of oxidative stress and causes transversion mutations and carcinogenesis. 8-OHdG is excision repaired by 8-OHdG DNA glycosylase 1 (OGG1), which is classified as nuclear and mitochondrial subtypes. We aimed to clarify the role of OGG1 in pancreatic ductal adenocarcinoma (PDAC).METHODS: Ninety-two patients with PDAC who had undergone surgical resection at multiple institutions were immunohistochemically analyzed. The OGG1 and 8-OHdG expression levels were scored using the Germann Immunoreactive Score. The cutoff values of OGG1, as well as that of 8-OHdG, were determined.
    RESULTS: The low nuclear OGG1 expression group (n = 41) showed significantly higher carbohydrate antigen (CA)19-9 (p = 0.026), and higher s-pancreas antigen (SPAN)-1 (p = 0.017) than the high expression group (n = 51). Nuclear OGG1 expression has no effect on the prognosis. The low mitochondrial OGG1 expression group (n = 40) showed higher CA19-9 (p = 0.041), higher SPAN-1 (p = 0.032), and more histological perineural invasion (p = 0.037) than the high expression group (n = 52). The low mitochondrial OGG1 expression group had a significantly shorter recurrence-free survival (p = 0.0080) and overall survival (p = 0.0073) rates. The Cox proportional hazards model revealed that low mitochondrial OGG1 expression is an independent risk factor of the PDAC prognosis. OGG1 expression was negatively correlated with 8-OHdG expression (p = 0.0004), and high 8-OHdG expression shortened the recurrence-free survival of patients with PDAC.
    CONCLUSIONS: Low mitochondrial OGG1 expression might aggravate the PDAC prognosis.
    Keywords:  8-OHdG; Cancer; Pancreas; Prognosis; ROS
  53. Nat Metab. 2020 Aug 03.
      CD8+ effector T (TE) cell proliferation and cytokine production depends on enhanced glucose metabolism. However, circulating T cells continuously adapt to glucose fluctuations caused by diet and inter-organ metabolite exchange. Here we show that transient glucose restriction (TGR) in activated CD8+ TE cells metabolically primes effector functions and enhances tumour clearance in mice. Tumour-specific TGR CD8+ TE cells co-cultured with tumour spheroids in replete conditions display enhanced effector molecule expression, and adoptive transfer of these cells in a murine lymphoma model leads to greater numbers of immunologically functional circulating donor cells and complete tumour clearance. Mechanistically, TE cells treated with TGR undergo metabolic remodelling that, after glucose re-exposure, supports enhanced glucose uptake, increased carbon allocation to the pentose phosphate pathway (PPP) and a cellular redox shift towards a more reduced state-all indicators of a more anabolic programme to support their enhanced functionality. Thus, metabolic conditioning could be used to promote efficiency of T-cell products for adoptive cellular therapy.
  54. J Cell Mol Med. 2020 Aug 05.
      The aim of the present study was to explore the underlying mechanisms involved in gastric cancer (GC) formation using data-independent acquisition (DIA) quantitative proteomics analysis. We identified the differences in protein expression and related functions involved in biological metabolic processes in GC. Totally, 745 differentially expressed proteins (DEPs) were found in GC tissues vs. gastric normal tissues. Despite enormous complexity in the details of the underlying regulatory network, we find that clusters of proteins from the DEPs were mainly involved in 38 pathways. All of the identified DEPs involved in oxidative phosphorylation were down-regulated. Moreover, GC possesses significantly altered biological metabolic processes, such as NADH dehydrogenase complex assembly and tricarboxylic acid cycle, which is mostly consistent with that in KEGG analysis. Furthermore the higher expression of UQCRQ, NDUFB7 and UQCRC2 were positively correlated with a better prognosis, implicating these proteins may as novel candidate diagnostic and prognostic biomarkers.
    Keywords:  DIA; biomarkers; gastric cancer; metabolic network
  55. Nat Commun. 2020 Aug 06. 11(1): 3903
      Top-down mass spectrometry (MS)-based proteomics provides a comprehensive analysis of proteoforms to achieve a proteome-wide understanding of protein functions. However, the MS detection of low-abundance proteins from blood remains an unsolved challenge due to the extraordinary dynamic range of the blood proteome. Here, we develop an integrated nanoproteomics method coupling peptide-functionalized superparamagnetic nanoparticles (NPs) with top-down MS for the enrichment and comprehensive analysis of cardiac troponin I (cTnI), a gold-standard cardiac biomarker, directly from serum. These NPs enable the sensitive enrichment of cTnI (<1 ng/mL) with high specificity and reproducibility, while simultaneously depleting highly abundant proteins such as human serum albumin (>1010 more abundant than cTnI). We demonstrate that top-down nanoproteomics can provide high-resolution proteoform-resolved molecular fingerprints of diverse cTnI proteoforms to establish proteoform-pathophysiology relationships. This scalable and reproducible antibody-free strategy can generally enable the proteoform-resolved analysis of low-abundance proteins directly from serum to reveal previously unachievable molecular details.
  56. Cancer Sci. 2020 Aug 07.
      Metabolic alterations are well documented in various cancers. Non-small cell lung cancers (NSCLCs) preferentially use lactate as the primary carbon source, but the underlying mechanisms are not well understood. We developed a lactate-dependent cell proliferation assay and found that dynamin-related protein (DRP1), which is highly expressed in KRAS-mutant NSCLC, is required for tumor cells to proliferate and uses lactate as fuel, demonstrating the critical role of DRP1 in the metabolic reprogramming of NSCLC. Metabolic and transcriptional profiling suggests that DRP1 orchestrates a supportive metabolic network to promote lactate utilization and redox homeostasis in lung cancer cells. DRP1 suppresses the production of reactive oxygen species (ROS) and protects cells against oxidative damage by enhancing lactate utilization. Moreover, targeting DRP1 not only reduces HSP90 expression but also enhances ROS-induced HSP90 cleavage, thus inhibiting activation of the MAPK and PI3K pathways and leading to suppressed lactate utilization and increased ROS-induced cell death. Taken together, these results suggest that DRP1 is a crucial regulator of lactate metabolism and redox homeostasis in KRAS-mutant lung cancer, and targeting lactate utilization by modulating DRP1 activity might be an effective treatment for lung cancer.
    Keywords:  Cancer metabolism; DRP1; KRAS mutation; Lactate; Lung cancer
  57. Front Cell Dev Biol. 2020 ;8 595
      Autophagy is a process of intracellular self-recycling and degradation that plays an important role in maintaining cell homeostasis. However, the molecular mechanism of autophagy remains to be further studied. Mitochondria-associated endoplasmic reticulum membranes (MAMs) are the region of the ER that mediate communication between the ER and mitochondria. MAMs have been demonstrated to be involved in autophagy, Ca2+ transport and lipid metabolism. Here, we discuss the composition and function of MAMs, more specifically, to emphasize the role of MAMs in regulating autophagy. Finally, some key information that may be useful for future research is summarized.
    Keywords:  autophagy; endoplasmic reticulum; mitochondria; mitochondria-associated endoplasmic reticulum membranes (MAMs); mitophagy
  58. Leukemia. 2020 Aug 06.
      Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group from acetyl-CoA to lysine residues of histones and play a central role in transcriptional regulation in diverse biological processes. Dysregulation of HAT activity can lead to human diseases including developmental disorders and cancer. Through genome-wide CRISPR-Cas9 screens, we identified several HATs of the MYST family as fitness genes for acute myeloid leukemia (AML). Here we investigate the essentiality of lysine acetyltransferase KAT7 in AMLs driven by the MLL-X gene fusions. We found that KAT7 loss leads to a rapid and complete loss of both H3K14ac and H4K12ac marks, in association with reduced proliferation, increased apoptosis, and differentiation of AML cells. Acetyltransferase activity of KAT7 is essential for the proliferation of these cells. Mechanistically, our data propose that acetylated histones provide a platform for the recruitment of MLL-fusion-associated adaptor proteins such as BRD4 and AF4 to gene promoters. Upon KAT7 loss, these factors together with RNA polymerase II rapidly dissociate from several MLL-fusion target genes that are essential for AML cell proliferation, including MEIS1, PBX3, and SENP6. Our findings reveal that KAT7 is a plausible therapeutic target for this poor prognosis AML subtype.
  59. Sci Rep. 2020 Aug 06. 10(1): 13179
      The survival and function of brain cells requires uninterrupted ATP synthesis. Different brain structures subserve distinct neurological functions, and therefore have different energy production/consumption requirements. Typically, mitochondrial function is assessed following their isolation from relatively large amounts of starting tissue, making it difficult to ascertain energy production/failure in small anatomical locations. In order to overcome this limitation, we have developed and optimized a method to measure mitochondrial function in brain tissue biopsy punches excised from anatomically defined brain structures, including white matter tracts. We describe the procedures for maintaining tissue viability prior to performing the biopsy punches, as well as provide guidance for optimizing punch size and the drug doses needed to assess various aspects of mitochondrial respiration. We demonstrate that our method can be used to measure mitochondrial respiration in anatomically defined subfields within the rat hippocampus. Using this method, we present experimental results which show that a mild traumatic brain injury (mTBI, often referred to as concussion) causes differential mitochondrial responses within these hippocampal subfields and the corpus callosum, novel findings that would have been difficult to obtain using traditional mitochondrial isolation methods. Our method is easy to implement and will be of interest to researchers working in the field of brain bioenergetics and brain diseases.
  60. Front Cell Dev Biol. 2020 ;8 651
      Proton-coupled monocarboxylate transporters (MCTs), representing the first four isoforms of the SLC16A gene family, mainly participate in the transport of lactate, pyruvate, and other monocarboxylates. Cancer cells exhibit a metabolic shift from oxidative metabolism to an enhanced glycolytic phenotype, leading to a higher production of lactate in the cytoplasm. Excessive accumulation of lactate threatens the survival of cancer cells, and the overexpression of proton-coupled MCTs observed in multiple types of cancer facilitates enhanced export of lactate from highly glycolytic cancer cells. Proton-coupled MCTs not only play critical roles in the metabolic symbiosis between hypoxic and normoxic cancer cells within tumors but also mediate metabolic interaction between cancer cells and cancer-associated stromal cells. Of the four proton-coupled MCTs, MCT1 and MCT4 are the predominantly expressed isoforms in cancer and have been identified as potential therapeutic targets in cancer. Therefore, in this review, we primarily focus on the roles of MCT1 and MCT4 in the metabolic reprogramming of cancer cells under hypoxic and nutrient-deprived conditions. Additionally, we discuss how MCT1 and MCT4 serve as metabolic links between cancer cells and cancer-associated stromal cells via transport of crucial monocarboxylates, as well as present emerging opportunities and challenges in targeting MCT1 and MCT4 for cancer treatment.
    Keywords:  glycolysis; lactic acid; metabolic networks and pathways; monocarboxylic acid transporters; tumor microenvironment
  61. Cell Stem Cell. 2020 Aug 06. pii: S1934-5909(20)30352-0. [Epub ahead of print]27(2): 189-190
      Stem cell biologists have been yearning to visualize hematopoietic stem cells (HSCs) in live animals since Kiel et al. (2005) first visualized them in bone cavities. With two recent papers from Christodoulou et al. (2020) and Upadhaya et al. (2020), we can all now see how HSCs behave in their niches!