bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2020‒07‒26
sixty-two papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Nat Metab. 2019 Oct;1(10): 958-965
      Mitochondrial DNA (mtDNA) mutagenesis and nuclear DNA repair defects are considered cellular mechanisms of ageing. mtDNA mutator mice with increased mtDNA mutagenesis show signs of premature ageing. However, why patients with mitochondrial diseases, or mice with other forms of mitochondrial dysfunction, do not age prematurely remains unknown. Here, we show that cells from mutator mice display challenged nuclear genome maintenance similar to that observed in progeric cells with defects in nuclear DNA repair. Cells from mutator mice show slow nuclear DNA replication fork progression, cell cycle stalling and chronic DNA replication stress, leading to double-strand DNA breaks in proliferating progenitor or stem cells. The underlying mechanism involves increased mtDNA replication frequency, sequestering of nucleotides to mitochondria, depletion of total cellular nucleotide pools, decreased deoxynucleoside 5'-triphosphate (dNTP) availability for nuclear genome replication and compromised nuclear genome maintenance. Our data indicate that defects in mtDNA replication can challenge nuclear genome stability. We suggest that defects in nuclear genome maintenance, particularly in the stem cell compartment, represent a unified mechanism for mouse progerias. Therefore, through their destabilizing effects on the nuclear genome, mtDNA mutations are indirect contributors to organismal ageing, suggesting that the direct role of mtDNA mutations in driving ageing-like symptoms might need to be revisited.
    DOI:  https://doi.org/10.1038/s42255-019-0120-1
  2. Front Oncol. 2020 ;10 1053
      Research on mitochondrial metabolism and respiration are rapidly developing areas, however, efficient and widely accepted methods for studying these in solid tumors are still missing. Here, we developed a new method without isotope tracing to quantitate time dependent mitochondrial citrate efflux in cell lines and human breast cancer samples. In addition, we studied ADP-activated respiration in both of the sample types using selective permeabilization and showed that metabolic activity and respiration are not equally linked. Three times lower amount of mitochondria in scarcely respiring MDA-MB-231 cells convert pyruvate and glutamate into citrate efflux at 20% higher rate than highly respiring MCF-7 mitochondria do. Surprisingly, analysis of 59 human breast cancers revealed the opposite in clinical samples as aggressive breast cancer subtypes, in comparison to less aggressive subtypes, presented with both higher mitochondrial citrate efflux and higher respiration rate. Additionally, comparison of substrate preference (pyruvate or glutamate) for both mitochondrial citrate efflux and respiration in triple negative breast cancers revealed probable causes for high glutamine dependence in this subtype and reasons why some of these tumors are able to overcome glutaminase inhibition. Our research concludes that the two widely used breast cancer cell lines fail to replicate mitochondrial function as seen in respective human samples. And finally, the easy method described here, where time dependent small molecule metabolism and ADP-activated respiration in solid human cancers are analyzed together, can increase success of translational research and ultimately benefit patients with cancer.
    Keywords:  ADP-activated respiration; OXPHOS; cancer metabolism; citrate; glutaminolysis; metabolic dependencies; mitochondrial flux; predictive biomarker
    DOI:  https://doi.org/10.3389/fonc.2020.01053
  3. Cancer Metab. 2020 ;8 17
      Background: ErbB2 breast cancer still remains an unmet need due to primary and/or acquired resistance to current treatment strategies. MEDICA compounds consist of synthetic long-chain α,ω-dicarboxylic acids previously reported to suppress breast cancer in PyMT transgenic mice.Methods: MEDICA efficacy and mode of action in the ErbB2 context was studied in ErbB2 transgenic mice and human breast cancer cells.
    Results: MEDICA treatment is shown here to suppress ErbB2 breast tumors and lung metastasis in ErbB2/neu MMTV transgenic mice, to suppress ErbB2/neu xenografts in nod/scid mice, and to suppress survival of AU565 and BT474 human ErbB2 breast cancer cells. Suppression of ErbB2 breast tumors by MEDICA is due to lipid raft disruption with loss of ErbB family members, including EGFR, ErbB2, and ErbB3. In addition, MEDICA inhibits mTORC1 activity, independently of abrogating the ErbB receptors and their signaling cascades. The double hit of MEDICA in abrogating ErbB and mTORC1 is partly accounted for by targeting mitochondria complex I.
    Conclusions: Mitochondrial targeting by MEDICA suppresses ErbB2 breast tumors and metastasis due to lipid raft disruption and inhibition of mTORC1 activity. Inhibition of mTORC1 activity by MEDICA avoids the resistance acquired by canonical mTORC1 inhibitors like rapalogs or mTOR kinase inhibitors.
    Keywords:  Breast cancer; ErbB2; Lipid rafts; Mitochondria; mTORC1
    DOI:  https://doi.org/10.1186/s40170-020-00223-8
  4. Nat Metab. 2020 Jul 06.
      Branched-chain amino acids (BCAAs) supply both carbon and nitrogen in pancreatic cancers, and increased levels of BCAAs have been associated with increased risk of pancreatic ductal adenocarcinomas (PDACs). It remains unclear, however, how stromal cells regulate BCAA metabolism in PDAC cells and how mutualistic determinants control BCAA metabolism in the tumour milieu. Here, we show distinct catabolic, oxidative and protein turnover fluxes between cancer-associated fibroblasts (CAFs) and cancer cells, and a marked reliance on branched-chain α-ketoacid (BCKA) in PDAC cells in stroma-rich tumours. We report that cancer-induced stromal reprogramming fuels this BCKA demand. The TGF-β-SMAD5 axis directly targets BCAT1 in CAFs and dictates internalization of the extracellular matrix from the tumour microenvironment to supply amino-acid precursors for BCKA secretion by CAFs. The in vitro results were corroborated with circulating tumour cells (CTCs) and PDAC tissue slices derived from people with PDAC. Our findings reveal therapeutically actionable targets in pancreatic stromal and cancer cells.
    DOI:  https://doi.org/10.1038/s42255-020-0226-5
  5. Int J Mol Sci. 2020 Jul 18. pii: E5083. [Epub ahead of print]21(14):
      Probing the pathogenicity and functional consequences of mitochondrial DNA (mtDNA) mutations from patient's cells and tissues is difficult due to genetic heteroplasmy (co-existence of wild type and mutated mtDNA in cells), occurrence of numerous mtDNA polymorphisms, and absence of methods for genetically transforming human mitochondria. Owing to its good fermenting capacity that enables survival to loss-of-function mtDNA mutations, its amenability to mitochondrial genome manipulation, and lack of heteroplasmy, Saccharomyces cerevisiae is an excellent model for studying and resolving the molecular bases of human diseases linked to mtDNA in a controlled genetic background. Using this model, we previously showed that a pathogenic mutation in mitochondrial ATP6 gene (m.9191T>C), that converts a highly conserved leucine residue into proline in human ATP synthase subunit a (aL222P), severely compromises the assembly of yeast ATP synthase and reduces by 90% the rate of mitochondrial ATP synthesis. Herein, we report the isolation of intragenic suppressors of this mutation. In light of recently described high resolution structures of ATP synthase, the results indicate that the m.9191T>C mutation disrupts a four α-helix bundle in subunit a and that the leucine residue it targets indirectly optimizes proton conduction through the membrane domain of ATP synthase.
    Keywords:  ATP synthase; ATP6 gene; C; genetic suppressors; m.9191T> mitochondrial DNA mutation; mitochondrial disease; proton conduction; yeast
    DOI:  https://doi.org/10.3390/ijms21145083
  6. Int J Oncol. 2020 Sep;57(3): 733-742
      The Warburg effect is a unique metabolic feature of the majority of tumor cells and is closely related to chemotherapeutic resistance. Pyruvate dehydrogenase kinase 1 (PDK1) is considered a 'switch' that controls the fate of pyruvate in glucose metabolism. However, to date, to the best of our knowledge, there are only a few studies to available which had studied the reduction of chemotherapeutic resistance via the metabolic reprogramming of tumor cells with PDK1 as a target. In the present study, it was found dicoumarol (DIC) reduced the phosphorylation of pyruvate dehydrogenase (PDH) by inhibiting the activity of PDK1, which converted the metabolism of human hepatocellular carcinoma (HCC) cells to oxidative phosphorylation, leading to an increase in mitochondrial reactive oxygen species ROS (mtROS) and a decrease in mitochondrial membrane potential (MMP), thereby increasing the apoptosis induced by oxaliplatin (OXA). Furthermore, the present study elucidated that the targeting of PDK1 may be a potential strategy for targeting metabolism in the chemotherapy of HCC. In addition, DIC as an 'old drug' exhibits novel efficacy, bringing new hope for antitumor therapy.
    DOI:  https://doi.org/10.3892/ijo.2020.5098
  7. Mol Pharm. 2020 Jul 21.
      Many mitochondrial metabolites and bioactive molecules contain two carboxylic acid moieties that make them unable to cross biological membranes. Hence, there is considerable interest in facilitating the uptake of these molecules into cells and mitochondria, to modify or report on their function. Conjugation to the triphenylphosphonium (TPP) lipophilic cation is widely used to deliver molecules selectively to mitochondria in response to the membrane potential. However, permanent attachment to the cation can disrupt the biological function of small dicarboxylates. Here, we have developed a strategy using TPP to release dicarboxylates selectively within mitochondria. For this the dicarboxylate is attached to a TPP via a single ester bond which is then cleaved by intra-mitochondrial esterase activity, releasing the dicarboxylate within the organelle. Leaving the second carboxylic acid free also means mitochondrial uptake is dependent on the pH gradient across the inner membrane. To assess this strategy, we synthesized a range of TPP monoesters of the model dicarboxylate, malonate. We then tested their mitochondrial accumulation and ability to deliver malonate to isolated mitochondria, and to cells in vitro and in vivo. A TPP-malonate monoester, TPP11-malonate, in which the dicarboxylate was attached to the TPP via a hydrophobic undecyl link was most effective at releasing malonate within mitochondria in cells and in vivo. Therefore, we have developed a TPP-monoester platform that enables the selective release of bioactive dicarboxylates within mitochondria.
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.0c00533
  8. Theranostics. 2020 ;10(17): 7710-7729
      Osteosarcoma is a common malignant bone cancer easily to metastasize. Much safer and more efficient strategies are still needed to suppress osteosarcoma growth and lung metastasis. We recently presented a pure physical method to fabricate Ångstrom-scale silver particles (AgÅPs) and determined the anti-tumor efficacy of fructose-coated AgÅPs (F-AgÅPs) against lung and pancreatic cancer. Our study utilized an optimized method to obtain smaller F-AgÅPs and aimed to assess whether F-AgÅPs can be used as an efficient and safe agent for osteosarcoma therapy. We also investigated whether the induction of apoptosis by altering glucose metabolic phenotype contributes to the F-AgÅPs-induced anti-osteosarcoma effects. Methods: A modified method was developed to prepare smaller F-AgÅPs. The anti-tumor, anti-metastatic and pro-survival efficacy of F-AgÅPs and their toxicities on healthy tissues were compared with that of cisplatin (a first-line chemotherapeutic drug for osteosarcoma therapy) in subcutaneous or orthotopic osteosarcoma-bearing nude mice. The pharmacokinetics, biodistribution and excretion of F-AgÅPs were evaluated by testing the levels of silver in serum, tissues, urine and feces of mice. A series of assays in vitro were conducted to assess whether the induction of apoptosis mediates the killing effects of F-AgÅPs on osteosarcoma cells and whether the alteration of glucose metabolic phenotype contributes to F-AgÅPs-induced apoptosis. Results: The newly obtained F-AgÅPs (9.38 ± 4.11 nm) had good stability in different biological media or aqueous solutions and were more effective than cisplatin in inhibiting tumor growth, improving survival, attenuating osteolysis and preventing lung metastasis in osteosarcoma-bearing nude mice after intravenous injection, but were well tolerated in normal tissues. One week after injection, about 68% of F-AgÅPs were excreted through feces. F-AgÅPs induced reactive oxygen species (ROS)-dependent apoptosis of osteosarcoma cells but not normal cells, owing to their ability to selectively shift glucose metabolism of osteosarcoma cells from glycolysis to mitochondrial oxidation by inhibiting pyruvate dehydrogenase kinase (PDK). Conclusion: Our study suggests the promising prospect of F-AgÅPs as a powerful selective anticancer agent for osteosarcoma therapy.
    Keywords:  glucose metabolism; osteosarcoma; pyruvate dehydrogenase kinase; reactive oxygen species; Ångstrom-scale silver particles
    DOI:  https://doi.org/10.7150/thno.45858
  9. Biomolecules. 2020 Jul 17. pii: E1068. [Epub ahead of print]10(7):
      Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer.
    Keywords:  cancer; metabolic disorders; metabolism; mitochondria; mitochondrial pyruvate carrier; neurodegeneration
    DOI:  https://doi.org/10.3390/biom10071068
  10. Biochim Biophys Acta Mol Basis Dis. 2020 Jul 19. pii: S0925-4439(20)30247-7. [Epub ahead of print] 165899
      Aging impairs the mitochondrial electron transport chain (ETC), especially in interfibrillar mitochondria (IFM). Mitochondria are in close contact with the endoplasmic reticulum (ER). Induction of ER stress leads to ETC injury in adult heart mitochondria. We asked if ER stress contributes to the mitochondrial dysfunction during aging. Subsarcolemmal mitochondria (SSM) and IFM were isolated from 3, 18, and 24 mo. C57Bl/6 mouse hearts. ER stress progressively increased with age, especially in 24 mo. mice that manifest mitochondrial dysfunction. OXPHOS was decreased in 24 mo. IFM oxidizing complex I and complex IV substrates. Proteomic analysis showed that the content of multiple complex I subunits was decreased in IFM from 24 mo. hearts, but remained unchanged in in 18 mo. IFM without a decrease in OXPHOS. Feeding 24 mo. old mice with 4-phenylbutyrate (4-PBA) for two weeks attenuated the ER stress and improved mitochondrial function. These results indicate that ER stress contributes to the mitochondrial dysfunction in aged hearts. Attenuation of ER stress is a potential approach to improve mitochondrial function in aged hearts.
    Keywords:  4-Phenylbutyrate; Aging; Complex I; Electron transport chain
    DOI:  https://doi.org/10.1016/j.bbadis.2020.165899
  11. FASEB J. 2020 Jul 20.
      Cellular communication network factor 6 (CCN6) mutations are linked with Progressive Pseudo Rheumatoid Dysplasia (PPRD) a debilitating musculoskeletal disorder. The function of CCN6 and the mechanism of PPRD pathogenesis remain unclear. Accordingly, we focused on the functional characterization of CCN6 and CCN6 mutants. Using size exclusion chromatography and native polyacrylamide gel electrophoresis we demonstrated that CCN6 is present as a component of the mitochondrial respiratory complex in human chondrocyte lines. By means of siRNA-mediated transfection and electron microscopy we showed that moderate reduction in CCN6 expression decreases the RER- mitochondria inter-membrane distance. Parallel native PAGE, immunoblotting and Complex I activity assays furthermore revealed increase in both mitochondrial distribution of CCN6 and mitochondrial respiratory complex assembly/activity in CCN6 depleted cells. CCN6 mutants resembling those linked with PPRD, which were generated by CRISPR-Cas9 technology displayed low level of expression of mutant CCN6 protein and inhibited respiratory complex assembly/activity. Electron microscopy and MTT assay of the mutants revealed abnormal mitochondria and poor cell viability. Taken together, our results indicate that CCN6 regulates mitochondrial respiratory complex assembly/activity as part of the mitochondrial respiratory complex by controlling the proximity of RER with the mitochondria, and CCN6 mutations disrupt mitochondrial respiratory complex assembly/activity resulting in mitochondrial defects and poor cell viability.
    Keywords:  PPRD; chondrocyte; mitochondria
    DOI:  https://doi.org/10.1096/fj.202000405RR
  12. Nat Metab. 2019 Feb;1(2): 201-211
      To satisfy its high energetic demand1, the brain depends on the metabolic cooperation of various cell types2-4. For example, astrocytic-derived lactate sustains memory consolidation5 by serving both as an oxidizable energetic substrate for neurons6 and as a signalling molecule7,8. Astrocytes and neurons also differ in the regulation of glycolytic enzymes9 and in the organization of their mitochondrial respiratory chain10. Unlike neurons, astrocytes rely on glycolysis for energy generation9 and, as a consequence, have a loosely assembled mitochondrial respiratory chain that is associated with a higher generation of mitochondrial reactive oxygen species (ROS)10. However, whether this abundant natural source of mitochondrial ROS in astrocytes fulfils a specific physiological role is unknown. Here we show that astrocytic mitochondrial ROS are physiological regulators of brain metabolism and neuronal function. We generated mice that inducibly overexpress mitochondrial-tagged catalase in astrocytes and show that this overexpression decreases mitochondrial ROS production in these cells during adulthood. Transcriptomic, metabolomic, biochemical, immunohistochemical and behavioural analysis of these mice revealed alterations in brain redox, carbohydrate, lipid and amino acid metabolic pathways associated with altered neuronal function and mouse behaviour. We found that astrocytic mitochondrial ROS regulate glucose utilization via the pentose-phosphate pathway and glutathione metabolism, which modulates the redox status and potentially the survival of neurons. Our data provide further molecular insight into the metabolic cooperation between astrocytes and neurons and demonstrate that mitochondrial ROS are important regulators of organismal physiology in vivo.
    DOI:  https://doi.org/10.1038/s42255-018-0031-6
  13. Sci Rep. 2020 Jul 20. 10(1): 11933
      Loss of estrogens at menopause is a major cause of osteoporosis and increased fracture risk. Estrogens protect against bone loss by decreasing osteoclast number through direct actions on cells of the myeloid lineage. Here, we investigated the molecular mechanism of this effect. We report that 17β-estradiol (E2) decreased osteoclast number by promoting the apoptosis of early osteoclast progenitors, but not mature osteoclasts. This effect was abrogated in cells lacking Bak/Bax-two pro-apoptotic members of the Bcl-2 family of proteins required for mitochondrial apoptotic death. FasL has been previously implicated in the pro-apoptotic actions of E2. However, we show herein that FasL-deficient mice lose bone mass following ovariectomy indistinguishably from FasL-intact controls, indicating that FasL is not a major contributor to the anti-osteoclastogenic actions of estrogens. Instead, using microarray analysis we have elucidated that ERα-mediated estrogen signaling in osteoclast progenitors decreases "oxidative phosphorylation" and the expression of mitochondria complex I genes. Additionally, E2 decreased the activity of complex I and oxygen consumption rate. Similar to E2, the complex I inhibitor Rotenone decreased osteoclastogenesis by promoting osteoclast progenitor apoptosis via Bak/Bax. These findings demonstrate that estrogens decrease osteoclast number by attenuating respiration, and thereby, promoting mitochondrial apoptotic death of early osteoclast progenitors.
    DOI:  https://doi.org/10.1038/s41598-020-68890-7
  14. Cancers (Basel). 2020 Jul 22. pii: E1999. [Epub ahead of print]12(8):
      Multiple myeloma (MM) is a B-cell malignancy requiring inflammatory microenvironment signals for cell survival and proliferation. Despite improvements in pharmacological tools, MM remains incurable mainly because of drug resistance. The present study aimed to investigate the implication of Toll-like receptor 4 (TLR4) as the potential mechanism of bortezomib (BTZ) resistance. We found that TLR4 activation induced mitochondrial biogenesis and increased mitochondrial mass in human MM cell lines. Moreover, TLR4 signaling was activated after BTZ exposure and was increased in BTZ-resistant U266 (U266-R) cells. A combination of BTZ with TAK-242, a selective TLR4 inhibitor, overcame drug resistance through the generation of higher and extended oxidative stress, strong mitochondrial depolarization and severe impairment of mitochondrial fitness which in turn caused cell energy crisis and activated mitophagy and apoptosis. We further confirmed the efficacy of a TAK-242/BTZ combination in plasma cells from refractory myeloma patients. Consistently, inhibition of TLR4 increased BTZ-induced mitochondrial depolarization, restoring pharmacological response. Taken together, these findings indicate that TLR4 signaling acts as a stress-responsive mechanism protecting mitochondria during BTZ exposure, sustaining mitochondrial metabolism and promoting drug resistance. Inhibition of TLR4 could be therefore be a possible target in patients with refractory MM to overcome BTZ resistance.
    Keywords:  TLR4; bortezomib resistance; mitochondria; myeloma; refractory CD138+
    DOI:  https://doi.org/10.3390/cancers12081999
  15. Oncol Rep. 2020 Sep;44(3): 1206-1215
      Breast cancer is the most common malignancy in women, and metastasis is the leading cause of death in breast cancer patients. Previous studies have shown that epithelial‑mesenchymal transition (EMT) is involved in the metastasis of breast cancer, but the metabolic reprogramming and regulation mechanisms involved in the EMT process are still unclear. In the present study, we successfully constructed an EMT cell model induced by transforming growth factor β1 (TGF‑β1) treatment of MCF‑7 cells at different times. The results showed that cell adhesion decreased, cell invasion increased and ATP levels increased in EMT MCF‑7 cells treated with TGF‑β1. Furthermore, the expression of fatty acid synthase (FASN) was decreased, and the expression of key fatty acid β‑oxidation enzymes (CPT1 and CD36) was elevated in treated cells compared to control cells. These results showed that the fatty acid oxidation pathway was enhanced. In addition, the expression of NADH:ubiquinone oxidoreductase subunit B8 (NDUFB8), mitochondrial transcription factor A (TFAM) and cytochrome c oxidase subunit I (COXI) increased, and the mitochondrial DNA copy number and ROS levels were also significantly increased during TGF‑β1‑induced EMT. These results indicated that mitochondrial oxidative phosphorylation (OXPHOS) activity was enhanced during EMT. In addition, we observed that the expression of p‑AMPK was increased and ACC (Acetyl‑CoA Carboxylase) was decreased during TGF‑β1‑induced EMT in MCF‑7 cells. Immunohistochemical analysis of clinical samples revealed high expression of FASN in epithelial cells that had high expression of E‑cadherin, while high expression of CPT‑1 was observed in mesenchymal cells that had high expression of vimentin. Results of the current study showed a metabolic transition in TGF‑β1‑induced EMT in MCF‑7 cells. This transition may regulate fatty acid oxidation and OXPHOS activity in EMT MCF‑7 cells through the p‑AMPK pathway. These data suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an essential component of TGF‑β1‑induced EMT and metastasis in breast cancer. This study thus provides a new strategy for identifying new therapeutic targets for breast cancer.
    DOI:  https://doi.org/10.3892/or.2020.7661
  16. Nat Metab. 2020 Apr;2(4): 318-334
      The survival and recurrence of dormant tumour cells following therapy is a leading cause of death in cancer patients. The metabolic properties of these cells are likely distinct from those of rapidly growing tumours. Here we show that Her2 down-regulation in breast cancer cells promotes changes in cellular metabolism, culminating in oxidative stress and compensatory upregulation of the antioxidant transcription factor, NRF2. NRF2 is activated during dormancy and in recurrent tumours in animal models and breast cancer patients with poor prognosis. Constitutive activation of NRF2 accelerates recurrence, while suppression of NRF2 impairs it. In recurrent tumours, NRF2 signalling induces a transcriptional metabolic reprogramming to re-establish redox homeostasis and upregulate de novo nucleotide synthesis. The NRF2-driven metabolic state renders recurrent tumour cells sensitive to glutaminase inhibition, which prevents reactivation of dormant tumour cells in vitro, suggesting that NRF2-high dormant and recurrent tumours may be targeted. These data provide evidence that NRF2-driven metabolic reprogramming promotes the recurrence of dormant breast cancer.
    Keywords:  Breast cancer recurrence; Her2; NRF2; ROS; Residual disease; Tumor metabolism
    DOI:  https://doi.org/10.1038/s42255-020-0191-z
  17. Nat Metab. 2020 May;2(5): 387-396
      Mitochondria are multidimensional organelles whose activities are essential to cellular vitality and organismal longevity, yet underlying regulatory mechanisms spanning these different levels of organization remain elusive1-5. Here we show that Caenorhabditis elegans nuclear transcription factor Y, beta subunit (NFYB-1), a subunit of the NF-Y transcriptional complex6-8, is a crucial regulator of mitochondrial function. Identified in RNA interference (RNAi) screens, NFYB-1 loss leads to perturbed mitochondrial gene expression, reduced oxygen consumption, mitochondrial fragmentation, disruption of mitochondrial stress pathways, decreased mitochondrial cardiolipin levels and abolition of organismal longevity triggered by mitochondrial impairment. Multi-omics analysis reveals that NFYB-1 is a potent repressor of lysosomal prosaposin, a regulator of glycosphingolipid metabolism. Limiting prosaposin expression unexpectedly restores cardiolipin production, mitochondrial function and longevity in the nfyb-1 background. Similarly, cardiolipin supplementation rescues nfyb-1 phenotypes. These findings suggest that the NFYB-1-prosaposin axis coordinates lysosomal to mitochondria signalling via lipid pools to enhance cellular mitochondrial function and organismal health.
    DOI:  https://doi.org/10.1038/s42255-020-0200-2
  18. BMC Cancer. 2020 Jul 23. 20(1): 685
      BACKGROUND: Colorectal cancer (CRC) is a heterogeneous tumor having various genetic alterations. The current treatment options had limited impact on disease free survival due to therapeutic resistance. Novel anticancer agents are needed to treat CRC specifically metastatic colorectal cancer. A novel coordination complex of platinum, (salicylaldiminato)Pt(II) complex with dimethylpropylene linkage (PT) exhibited potential anti-cancer activity. In this study, we explored the molecular mechanism of PT-induced cell death in colorectal cancer.METHODS: Colony formation was evaluated using the clonogenic assay. Apoptosis, cell cycle analysis, reactive oxygen species, mitochondrial membrane potential and caspase-3/- 7 were assessed by flow cytometry. Glutathione level was detected by colorimetric assay. PT-induced alteration in pro-apoptotic/ anti-apoptotic proteins and other signaling pathways were investigated using western blotting. P38 downregulation was performed using siRNA.
    RESULTS: In the present study, we explored the molecular mechanism of PT-mediated inhibition of cell proliferation in colorectal cancer cells. PT significantly inhibited the colony formation in human colorectal cancer cell lines (HT-29, SW480 and SW620) by inducing apoptosis and necrosis. This platinum complex was shown to significantly increase the reactive oxygen species (ROS) generation, depletion of glutathione and reduced mitochondrial membrane potential in colorectal cancer cells. Exposure to PT resulted in the downregulation of anti-apoptotic proteins (Bcl2, BclxL, XIAP) and alteration in Cyclins expression. Furthermore, PT increased cytochrome c release into cytosol and enhanced PARP cleavage leading to activation of intrinsic apoptotic pathway. Moreover, pre-treatment with ROS scavenger N-acetylcysteine (NAC) attenuated apoptosis suggesting that PT-induced apoptosis was driven by oxidative stress. Additionally, we show that PT-induced apoptosis was mediated by activating p38 MAPK and inhibiting AKT pathways. This was demonstrated by using chemical inhibitor and siRNA against p38 kinase which blocked the cytochrome c release and apoptosis in colorectal cancer cells.
    CONCLUSION: Collectively, our data demonstrates that the platinum complex (PT) exerts its anti-proliferative effect on CRC by ROS-mediated apoptosis and activating p38 MAPK pathway. Thus, our findings reveal a novel mechanism of action for PT on colorectal cancer cells and may have therapeutic implication.
    Keywords:  Apoptosis; Colorectal Cancer; MAPK; Platinum; Redox balance
    DOI:  https://doi.org/10.1186/s12885-020-07165-w
  19. Nat Metab. 2019 Oct;1(10): 1009-1026
      Non-alcoholic fatty liver disease (NAFLD) represents a key feature of obesity-related type 2 diabetes with increasing prevalence worldwide. To our knowledge, no treatment options are available to date, paving the way for more severe liver damage, including cirrhosis and hepatocellular carcinoma. Here, we show an unexpected function for an intracellular trafficking regulator, the small Rab GTPase Rab24, in mitochondrial fission and activation, which has an immediate impact on hepatic and systemic energy homeostasis. RAB24 is highly upregulated in the livers of obese patients with NAFLD and positively correlates with increased body fat in humans. Liver-selective inhibition of Rab24 increases autophagic flux and mitochondrial connectivity, leading to a strong improvement in hepatic steatosis and a reduction in serum glucose and cholesterol levels in obese mice. Our study highlights a potential therapeutic application of trafficking regulators, such as RAB24, for NAFLD and establishes a conceptual functional connection between intracellular transport and systemic metabolic dysfunction.
    DOI:  https://doi.org/10.1038/s42255-019-0124-x
  20. Mitochondrion. 2020 Jul 17. pii: S1567-7249(20)30165-3. [Epub ahead of print]
      Leber hereditary optic neuropathy (LHON) is one of the most common primary mitochondrial diseases. It is caused by point mutations in mitochondrial DNA (mtDNA) genes and in some cases, it can result in irreversible vision loss, primarily in young men. It is currently unknown why LHON mutations affect only some carriers and whether bioenergetic compensation enables unaffected carriers to overcome mitochondrial impairment and preserve cellular function. Here, we conducted bioenergetic metabolic assays and RNA sequencing to address this question using male-only, age-matched, m.11778G>A lymphoblasts and primary fibroblasts from both unaffected carriers and affected individuals. Our work indicates that OXPHOS bioenergetic compensation in LHON peripheral cells does not explain disease phenotype. We show that complex I impairment is similar in cells from unaffected carrier and affected patients, despite a transcriptional downregulation of metabolic pathways including glycolysis in affected cells relative to carriers detected by RNA sequencing. Although we did not detect OXPHOS bioenergetic compensation in carrier cells under basal conditions, our results indicate that cells from affected patients suffer a growth impairment under metabolic challenge compared to carrier cells, which were unaffected by metabolic challenge. If recapitulated in retinal ganglion cells, decreased susceptibility to metabolic challenge in unaffected carriers may help preserve metabolic homeostasis in the face of the mitochondrial complex I bioenergetic defect.
    DOI:  https://doi.org/10.1016/j.mito.2020.07.003
  21. Nat Rev Drug Discov. 2020 Jul 24.
      The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
    DOI:  https://doi.org/10.1038/s41573-020-0072-x
  22. Cancer Res. 2020 Jul 21. pii: canres.0754.2020. [Epub ahead of print]
      Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO) are closely related, rare kidney tumors. Mutations in complex I (CI)-encoding genes play an important role in dysfunction of the oxidative phosphorylation (OXPHOS) system in RO but are less frequently observed in chRCC. As such, the relevance of OXPHOS status and role of CI mutations in chRCC remain unknown. To address this issue, we performed proteome and metabolome profiling as well as mitochondrial whole-exome sequencing to detect mitochondrial alterations in chRCC tissue specimens. Multi-omic analysis revealed downregulation of electron transport chain (ETC) components in chRCC that differed from the expression profile in RO. A decrease in mitochondrial (mt)DNA content, rather than CI mutations, was the main cause for reduced OXPHOS in chRCC. There was a negative correlation between protein and transcript levels of nuclear DNA- but not mtDNA-encoded ETC complex subunits in chRCC. In addition, the reactive oxygen species scavenger glutathione (GSH) was upregulated in chRCC due to decreased expression of proteins involved in GSH degradation. These results demonstrate that distinct mechanisms of OXPHOS exist in chRCC and RO and that expression levels of ETC complex subunits can serve as a diagnostic marker for this rare malignancy.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-0754
  23. Elife. 2020 Jul 20. pii: e54166. [Epub ahead of print]9
      Fatty acid β-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited β-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.
    Keywords:  cancer biology; human; mouse
    DOI:  https://doi.org/10.7554/eLife.54166
  24. Pharmaceutics. 2020 Jul 20. pii: E686. [Epub ahead of print]12(7):
      Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Despite treatment, most patients experience relapse and the 5-year survival rate of ovarian cancer is less than 50%. Serotonin has cell growth-promoting functions in a variety of carcinomas, but the effect of serotonin receptor antagonists on ovarian cancer cells is unknown. In this study, it was confirmed that methiothepin, a serotonin receptor antagonist, suppresses the viability of, and induces apoptosis in, ovarian cancer cells. Methiothepin also induces mitochondrial dysfunction, represented by depolarization of the mitochondrial membrane and increased mitochondrion-specific Ca2+ levels, and causes metabolic disruption in cancer cells such as decreased ATP production and oxidative phosphorylation. Methiothepin also interferes with vascular development in transgenic zebrafish embryos. Combination treatment with methiothepin improves the anti-cancer effect of paclitaxel, a standard chemotherapeutic agent. In conclusion, this study revealed that methiothepin is a potential novel therapeutic agent for ovarian cancer treatment.
    Keywords:  methiothepin; mitochondria; ovarian cancer; paclitaxel
    DOI:  https://doi.org/10.3390/pharmaceutics12070686
  25. Biochem Pharmacol. 2020 Jul 20. pii: S0006-2952(20)30403-2. [Epub ahead of print] 114167
      Naphthoquinone derivatives and metabolites are widely dispersed molecules in nature. Alkannin, a natural naphthoquinone compound, induces excellent cytotoxicity in cancer cells. However, the detailed mechanism by which alkannin inhibits cancer cell survival remains unclear. In the present study, we isolated alkannin from Arnebia euchroma and found that alkannin induced cytotoxic autophagy and apoptosis in many types of cancer cells in a dose-dependent manner. Alkannin treatment resulted in elevated accumulation of intracellular reactive oxygen species (ROS), leading to mitochondrial membrane potential loss, oxidative damage and JNK and p38 MAPK pathway activation. Notably, we found an antagonistic pattern of p38 MAPK and JNK signaling in the regulation of alkannin-mediated apoptosis and autophagy. Antioxidant NAC effectively attenuated alkannin-induced cytotoxicity and activation of downstream signaling pathways. Moreover, alkannin enhanced the sensitivity of cancer cells to chemotherapeutic agents. In summary, our study highlights the significant broad-spectrum antitumor effects of alkannin and reveals an important mechanism by which alkannin induces cytotoxic autophagy and apoptosis by promoting ROS-mediated mitochondrial dysfunction and activation of the JNK pathway.
    Keywords:  Alkannin; Apoptosis; Cytotoxic autophagy; JNK pathway; Reactive oxygen species
    DOI:  https://doi.org/10.1016/j.bcp.2020.114167
  26. Amino Acids. 2020 Jul 21.
      Increasing evidence indicates that the enzyme creatine kinase (CK) is intimately involved in microvascular contractility. The mitochondrial isoenzyme catalyses phosphocreatine synthesis from ATP, while cytoplasmic CK, predominantly the BB isoenzyme in vascular tissue, is tightly bound near myosin ATPase, where it favours ATP production from phosphocreatine to metabolically support vascular contractility. However, the effect of CK gene inactivation on microvascular function is hitherto unknown. We studied functional and structural parameters of mesenteric resistance arteries isolated from 5 adult male mice lacking cytoplasmic BB-CK and ubiquitous mitochondrial CK (CK-/-) vs 6 sex/age-matched controls. Using a Mulvany Halpern myograph, we assessed the acute maximum contractile force with 125 mM K+ and 10-5 M norepinephrine, and the effect of two inhibitors, dinitrofluorobenzene, which inhibits phosphotransfer enzymes (0.1 μM), and the specific adenylate kinase inhibitor P1, P5-di(adenosine 5') pentaphosphate (10-6 to 10-5 M). WT and CK-/- did not significantly differ in media thickness, vascular elasticity parameters, or acute maximum contractile force. CK-/- arteries displayed greater reduction in contractility after dinitrofluorobenzene 38%; vs 14% in WT; and after AK inhibition, 14% vs 5.5% in WT, and displayed abnormal mitochondria, with a partial loss of the inner membrane. Thus, CK-/- mice display a surprisingly mild phenotype in vascular dysfunction. However, the mitochondrial abnormalities and greater effect of inhibitors on contractility may reflect a compromised energy metabolism. In CK-/- mice, compensatory mechanisms salvage energy metabolism, as described for other CK knock-out models.
    Keywords:  BB-creatine kinase isoenzyme; Creatine kinase; Knockout mice; Mitochondrial creatine kinase isoenzyme; Resistance arteries; Wire myograph
    DOI:  https://doi.org/10.1007/s00726-020-02872-x
  27. Drug Deliv. 2020 Dec;27(1): 1094-1105
      Multidrug resistance (MDR) is the primary cause for the failure of chemotherapy in the treatment of colon cancer. Recent research has indicated that the combination of a chemotherapeutic agent and a mitochondrial inhibitor might represent a promising strategy to help overcome MDR. However, for this approach to be clinically effective, it is important that the two drugs can be actively and simultaneously delivered into tumor cells at an optimal ratio and completely released drug within cells. To address these challenges, we designed and prepared a folate receptor-targeted and redox-responsive drug delivery system (FA- ss -P/A) that was able to co-deliver paclitaxel (PTX) and adjudin (ADD) to reverse colon cancer MDR. The PTX prodrug was obtained by conjugating PTX to dextrin via a disulfide-linkage. Then, folic acid (FA) was modified on the PTX prodrug. Finally, ADD, a mitochondrial inhibitor, was encapsulated in the PTX prodrug-formed micelles. A series of in vitro and in vivo experiments subsequently demonstrated that FA- ss -P/A can effectively reverse MDR by increasing cell uptake, inhibiting PTX efflux, and improving drug release.
    Keywords:  Multidrug resistance; adjudin; co-delivery; mitochondria-inhibition
    DOI:  https://doi.org/10.1080/10717544.2020.1797245
  28. Sci Rep. 2020 Jul 20. 10(1): 11952
      N-myristoyltransferase-1 (NMT1) catalyzes protein myristoylation, a lipid modification that is elevated in cancer cells. NMT1 sustains proliferation and/or survival of cancer cells through mechanisms that are not completely understood. We used genetic and pharmacological inhibition of NMT1 to further dissect the role of this enzyme in cancer, and found an unexpected essential role for NMT1 at promoting lysosomal metabolic functions. Lysosomes mediate enzymatic degradation of vesicle cargo, and also serve as functional platforms for mTORC1 activation. We show that NMT1 is required for both lysosomal functions in cancer cells. Inhibition of NMT1 impaired lysosomal degradation leading to autophagy flux blockade, and simultaneously caused the dissociation of mTOR from the surface of lysosomes leading to decreased mTORC1 activation. The regulation of lysosomal metabolic functions by NMT1 was largely mediated through the lysosomal adaptor LAMTOR1. Accordingly, genetic targeting of LAMTOR1 recapitulated most of the lysosomal defects of targeting NMT1, including defective lysosomal degradation. Pharmacological inhibition of NMT1 reduced tumor growth, and tumors from treated animals had increased apoptosis and displayed markers of lysosomal dysfunction. Our findings suggest that compounds targeting NMT1 may have therapeutic benefit in cancer by preventing mTORC1 activation and simultaneously blocking lysosomal degradation, leading to cancer cell death.
    DOI:  https://doi.org/10.1038/s41598-020-68615-w
  29. Int J Mol Sci. 2020 Jul 17. pii: E5040. [Epub ahead of print]21(14):
      Circulating tumor cells (CTCs) are cancer cells that detach from the primary site and travel in the blood stream. A higher number of CTCs increases the risk of breast cancer metastasis, and it is inversely associated with the survival rates of patients with breast cancer. Although the numbers of CTCs are generally low and the majority of CTCs die in circulation, the survival of a few CTCs can seed the development of a tumor at a secondary location. An increasing number of studies demonstrate that CTCs undergo modification in response to the dynamic biophysical environment in the blood due in part to fluid shear stress. Fluid shear stress generates reactive oxygen species (ROS), triggers redox-sensitive cell signaling, and alters the function of intracellular organelles. In particular, the mitochondrion is an important target organelle in determining the metastatic phenotype of CTCs. In healthy cells, mitochondria produce adenosine triphosphate (ATP) via oxidative phosphorylation in the electron transport chain, and during oxidative phosphorylation, they produce physiological levels of ROS. Mitochondria also govern death mechanisms such as apoptosis and mitochondrial permeability transition pore opening to, in order eliminate unwanted or damaged cells. However, in cancer cells, mitochondria are dysregulated, causing aberrant energy metabolism, redox homeostasis, and cell death pathways that may favor cancer invasiveness. In this review, we discuss the influence of fluid shear stress on CTCs with an emphasis on breast cancer pathology, then discuss alterations of cellular mechanisms that may increase the metastatic potentials of CTCs.
    Keywords:  breast cancer; circulating tumor cells; fluid shear stress; mitochondria; oxidative stress
    DOI:  https://doi.org/10.3390/ijms21145040
  30. Diabetologia. 2020 Jul 23.
      Recent developments in the field of genetics have accelerated our understanding of the aetiology of complex diseases. Type 2 diabetes mellitus and cancer are no exception, with large-scale genome-wide association studies (GWAS) facilitating exploration of the underlying pathology. Here, we discuss how genetics studies can be used to investigate the relationship between these complex diseases. Observational epidemiological studies consistently report that people with type 2 diabetes have a higher risk of several types of cancer. Indeed, type 2 diabetes and cancer share many common risk factors, such as obesity, ageing, poor diet and low levels of physical activity. However, questions remain regarding the biological mechanisms that link these two diseases. Large-scale GWAS of type 2 diabetes and cancer allow us to consider the evidence for shared genetic architecture. Several shared susceptibility genes have been identified, yet tissue specificity and direction of effect must be taken into account when considering common genetic aetiology. We also consider how GWAS, and associated techniques such as Mendelian randomisation, allow us to dissect the link between the two diseases and address questions such as 'Does type 2 diabetes cause cancer or is the increased risk observed driven by higher adiposity or another associated metabolic feature?' Graphical abstract.
    Keywords:  Adiposity; Cancer; Diabetes; GWAS; Genetics; Mendelian randomisation; Review; Type 2 diabetes
    DOI:  https://doi.org/10.1007/s00125-020-05228-y
  31. J Proteome Res. 2020 Jul 21.
      Pancreatic cancer (PC) is becoming one of the deadliest cancers, with mortality among the highest worldwide because of its pathogenic latency and the lack of efficient drugs in the clinic. Considering that cancer cells undergo proliferation and differentiation at substantial metabolic costs, as indicated by dysregulated glycolysis and an abnormal TCA cycle induced by mitochondrial damage, we investigated the therapeutic capacity of berberine (BBR) in pancreatic cancer using a cell metabolomics method. A phenotypic assay revealed the significant inhibitory role of BBR on PC cell viability and metastasis. In addition, a precision-targeted metabolome assay showed that BBR profoundly dysregulated the energy metabolism of PC cells, and phenotypic observations based on imaging indicated that PC cell mitochondria were markedly damaged after BBR treatment. Notably, citrate metabolism and transportation in cell mitochondria were significantly influenced by BBR, which led to the blocked biosynthesis of the defined fatty acids (FAs) through the regulation of ACLY, ACO1 and SLC13A5. Therefore, the regulatory effects of FAs on PC cell proliferation and metastasis may be regulated by BBR through targeting citrate metabolism. Collectively, our in vitro data preliminarily reveals the therapeutic potential of BBR against pancreatic cancer by targeting citrate metabolism, citrate might be a new target for drug development and the treatment against PC, but further experimental verification will be required subsequently; Moreover, our study demonstrated cell metabolomics method pertains the capacity to rapidly explore biochemical function of natural products.
    DOI:  https://doi.org/10.1021/acs.jproteome.0c00394
  32. Cells. 2020 Jul 18. pii: E1725. [Epub ahead of print]9(7):
      Recent studies conducted over the past 10 years evidence the intriguing role of the tumor suppressor gene Phosphatase and Tensin Homolog deleted on Chromosome 10 PTEN in the regulation of cellular energy expenditure, together with its capability to modulate proliferation and survival, thus expanding our knowledge of its physiological functions. Transgenic PTEN mice models are resistant to oncogenic transformation, present decreased adiposity and reduced cellular glucose and glutamine uptake, together with increased mitochondrial oxidative phosphorylation. These acquisitions led to a novel understanding regarding the role of PTEN to counteract cancer cell metabolic reprogramming. Particularly, PTEN drives an "anti-Warburg state" in which less glucose is taken up, but it is more efficiently directed to the mitochondrial Krebs cycle. The maintenance of cellular homeostasis together with reduction of metabolic stress are controlled by specific pathways among which autophagy, a catabolic process strictly governed by mTOR and PTEN. Besides, a role of PTEN in metabolic reprogramming and tumor/stroma interactions in cancer models, has recently been established. The genetic inactivation of PTEN in stromal fibroblasts of mouse mammary glands, accelerates breast cancer initiation and progression. This review will discuss our novel understanding in the molecular connection between cell metabolism and autophagy by PTEN, highlighting novel implications regarding tumor/stroma/immune system interplay. The newly discovered action of PTEN opens innovative avenues for investigations relevant to counteract cancer development and progression.
    Keywords:  Warburg state; cancer metabolism; immune system; stroma
    DOI:  https://doi.org/10.3390/cells9071725
  33. Cancer Res. 2020 Jul 22. pii: canres.3807.2019. [Epub ahead of print]
      Extracellular adenosine triphosphate (eATP) is a signaling molecule which variably affects all cells of the immune system either directly or after hydrolysis to adenosine. Although eATP is virtually absent in the interstitium of normal tissues, it can be present in the hundreds of micromolar range in tumors, a concentration compatible with activation of the ATP-gated ionotropic P2X7 receptor. Here we show that P2X7 activity in tumor-infiltrating T cells (TILs) induces cellular senescence and limits tumor suppression. P2X7 stimulation affected cell cycling of effector T cells and resulted in generation of mitochondrial reactive oxygen species (ROS) and p38 MAPK-dependent upregulation of cyclin-dependent kinase inhibitor 1A (Cdkn1a, encoding for p21Waf1/Cip1). Lack of P2X7 promoted a transcriptional signature that correlated with enhanced cytotoxic T cell response in human solid tumors. In mice, transfer of tumor specific T cells with deletion of P2rx7 significantly reduced tumor growth and extended survival. Collectively, these findings uncover a purinergic checkpoint that can be targeted to improve the efficacy of cancer immunotherapy strategies.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-19-3807
  34. Nat Metab. 2020 Jan;2(1): 81-96
      Serine racemase (SRR) catalyses not only the racemization but also the dehydration of L-serine and D-serine, resulting in the formation of pyruvate and ammonia. Although SRR activity is important in the central nervous system, SRR has not been linked to cancer metabolism before. Here we show that SRR supports proliferation of colorectal-cancer cells. We find that SRR expression is upregulated in colorectal adenoma and adenocarcinoma lesions compared with non-neoplastic mucosa in human colorectal-cancer specimens. SRR-mediated dehydration of serine contributes to the pyruvate pool in colon-cancer cells, enhances proliferation, maintains mitochondrial mass and increases basal reactive oxygen species production, which has anti-apoptotic effects. Moreover, SRR promotes acetylation of histone H3 by maintaining intracellular acetyl-CoA levels. Inhibition of SRR suppresses growth of colorectal tumours in mice and augments the efficacy of 5-fluorouracil treatment. Our findings highlight a previously unknown mechanism through which a racemase supports cancer-cell growth and suggest that SRR might be a molecular target for colorectal-cancer therapy.
    DOI:  https://doi.org/10.1038/s42255-019-0156-2
  35. Nat Metab. 2019 Mar;1(3): 404-415
      NADPH donates high-energy electrons for antioxidant defence and reductive biosynthesis. Cytosolic NADP is recycled to NADPH by the oxidative pentose-phosphate pathway (oxPPP), malic enzyme 1 (ME1) and isocitrate dehydrogenase 1 (IDH1). Here we show that any one of these routes can support cell growth, but the oxPPP is uniquely required to maintain a normal NADPH/NADP ratio, mammalian dihydrofolate reductase (DHFR) activity and folate metabolism. These findings are based on CRISPR deletions of glucose-6-phosphate dehydrogenase (G6PD, the committed oxPPP enzyme), ME1, IDH1 and combinations thereof in HCT116 colon cancer cells. Loss of G6PD results in high NADP, which induces compensatory increases in ME1 and IDH1 flux. But the high NADP inhibits DHFR, resulting in impaired folate-mediated biosynthesis, which is reversed by recombinant expression of Escherichia coli DHFR. Across different cancer cell lines, G6PD deletion produced consistent changes in folate-related metabolites, suggesting a general requirement for the oxPPP to support folate metabolism.
    DOI:  https://doi.org/10.1038/s42255-019-0043-x
  36. Front Oncol. 2020 ;10 991
      Abnormally low level of interstitial oxygen, or hypoxia, is a hallmark of tumor microenvironment and a known promoter of cancer chemoresistance. Inside a solid tumor mass, the hypoxia stems largely from inadequate supply of oxygenated blood through sparse or misshapen tumor vasculature whilst oxygen utilization rates are low in typical tumor's glycolytic metabolism. In acute leukemias, however, markers of intracellular hypoxia such as increased pimonidazole adduct staining and HIF-1α stabilization are observed in advanced leukemic bone marrows (BM) despite an increase in BM vasculogenesis. We utilized intravital fast scanning two-photon phosphorescence lifetime imaging microscopy (FaST-PLIM) in a BCR-ABL B-ALL mouse model to image the extracellular oxygen concentrations (pO2) in leukemic BM, and we related the extracellular oxygen levels to intracellular hypoxia, vascular markers and local leukemia burden. We observed a transient increase in BM pO2 in initial disease stages with intermediate leukemia BM burden, which correlated with an expansion of blood-carrying vascular network in the BM. Yet, we also observed increased formation of intracellular pimonidazole adducts in leukemic BM at the same time. This intermediate stage was followed by a significant decrease of extracellular pO2 and further increase of intracellular hypoxia as leukemia cellularity overwhelmed BM in disease end-stage. Remarkably, treatment of leukemic mice with IACS-010759, a pharmacological inhibitor of mitochondrial Complex I, substantially increased pO2 in the BM with advanced B-ALL, and it alleviated intracellular hypoxia reported by pimonidazole staining. High rates of oxygen consumption by B-ALL cells were confirmed by Seahorse assay including in ex vivo cells. Our results suggest that B-ALL expansion in BM is associated with intense oxidative phosphorylation (OxPhos) leading to the onset of metabolic BM hypoxia despite increased BM vascularization. Targeting mitochondrial respiration may be a novel approach to counteract BM hypoxia in B-ALL and, possibly, tumor hypoxia in other OxPhos-reliant malignancies.
    Keywords:  acute lymphobastic leukemia; bone marrow; hypoxia; leukemia; oxidative phosphorylation; oxygen; vascularity
    DOI:  https://doi.org/10.3389/fonc.2020.00991
  37. Nat Metab. 2020 Feb;2(2): 132-141
      Cholesterol metabolism produces essential membrane components as well as metabolites with a variety of biological functions. In the tumour microenvironment, cell-intrinsic and cell-extrinsic cues reprogram cholesterol metabolism and consequently promote tumourigenesis. Cholesterol-derived metabolites play complex roles in supporting cancer progression and suppressing immune responses. Preclinical and clinical studies have shown that manipulating cholesterol metabolism inhibits tumour growth, reshapes the immunological landscape and reinvigorates anti-tumour immunity. Here, we review cholesterol metabolism in cancer cells, its role in cancer progression and the mechanisms through which cholesterol metabolites affect immune cells in the tumour microenvironment. We also discuss therapeutic strategies aimed at interfering with cholesterol metabolism, and how the combination of such approaches with existing anti-cancer therapies can have synergistic effects, thus offering new therapeutic opportunities.
    DOI:  https://doi.org/10.1038/s42255-020-0174-0
  38. Nat Metab. 2020 Jul;2(7): 635-647
      T cells undergo metabolic rewiring to meet their bioenergetic, biosynthetic and redox demands following antigen stimulation. To fulfil these needs, effector T cells must adapt to fluctuations in environmental nutrient levels at sites of infection and inflammation. Here, we show that effector T cells can utilize inosine, as an alternative substrate, to support cell growth and function in the absence of glucose in vitro. T cells metabolize inosine into hypoxanthine and phosphorylated ribose by purine nucleoside phosphorylase. We demonstrate that the ribose subunit of inosine can enter into central metabolic pathways to provide ATP and biosynthetic precursors, and that cancer cells display diverse capacities to utilize inosine as a carbon source. Moreover, the supplementation with inosine enhances the anti-tumour efficacy of immune checkpoint blockade and adoptive T-cell transfer in solid tumours that are defective in metabolizing inosine, reflecting the capability of inosine to relieve tumour-imposed metabolic restrictions on T cells.
    DOI:  https://doi.org/10.1038/s42255-020-0219-4
  39. Cancers (Basel). 2020 Jul 17. pii: E1933. [Epub ahead of print]12(7):
      While a shift in energy metabolism is essential to cancers, the knowledge about the involvement of the mitochondrial genome in tumorigenesis and progression in oral squamous cell carcinoma (OSCC) is still very limited. In this study, we evaluated 37 OSCC tumors and the corresponding benign mucosa tissue pairs by deep sequencing of the complete mitochondrial DNA (mtDNA). After extensive quality control, we identified 287 variants, 137 in tumor and 150 in benign samples exceeding the 1% threshold. Variant heteroplasmy levels were significantly increased in cancer compared to benign tissues (p = 0.0002). Furthermore, pairwise high heteroplasmy frequency difference variants (∆HF% > 20) with potential functional impact were increased in the cancer tissues (p = 0.024). Fourteen mutations were identified in the protein-coding region, out of which thirteen were detected in cancer and only one in benign tissue. After eight years of follow-up, the risk of mortality was higher for patients who harbored at least one ∆HF% > 20 variant in mtDNA protein-coding regions relative to those with no mutations (HR = 4.6, (95%CI = 1.3-17); p = 0.019 in primary tumor carriers). Haplogroup affiliation showed an impact on survival time, which however needs confirmation in a larger study. In conclusion, we observed a significantly higher accumulation of somatic mutations in the cancer tissues associated with a worse prognosis.
    Keywords:  NGS; OSCC; haplogroup; heteroplasmy; mitochondrial DNA; mtDNA; next generation sequencing; oral cancer; oral squamous cell carcinoma; survival analysis
    DOI:  https://doi.org/10.3390/cancers12071933
  40. Sci Rep. 2020 Jul 24. 10(1): 12407
      Among obese subjects, metabolically healthy (MHO) and unhealthy obese (MUHO) subjects exist, the latter being characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Insulin resistance and obesity are known to associate with alterations in mitochondrial density, morphology, and function. Therefore, we assessed mitochondrial function in human subcutaneous preadipocytes as well as in differentiated adipocytes derived from well-matched donors. Primary subcutaneous preadipocytes from 4 insulin-resistant (MUHO) versus 4 insulin-sensitive (MHO), non-diabetic, morbidly obese Caucasians (BMI > 40 kg/m2), matched for sex, age, BMI, and percentage of body fat, were differentiated in vitro to adipocytes. Real-time cellular respiration was measured using an XF24 Extracellular Flux Analyzer (Seahorse). Lipolysis was stimulated by forskolin (FSK) treatment. Mitochondrial respiration was fourfold higher in adipocytes versus preadipocytes (p = 1.6*10-9). In adipocytes, a negative correlation of mitochondrial respiration with donors' insulin sensitivity was shown (p = 0.0008). Correspondingly, in adipocytes of MUHO subjects, an increased basal respiration (p = 0.002), higher proton leak (p = 0.04), elevated ATP production (p = 0.01), increased maximal respiration (p = 0.02), and higher spare respiratory capacity (p = 0.03) were found, compared to MHO. After stimulation with FSK, the differences in ATP production, maximal respiration and spare respiratory capacity were blunted. The differences in mitochondrial respiration between MUHO/MHO were not due to altered mitochondrial content, fuel switch, or lipid metabolism. Thus, despite the insulin resistance of MUHO, we could clearly show an elevated mitochondrial respiration of MUHO adipocytes. We suggest that the higher mitochondrial respiration reflects a compensatory mechanism to cope with insulin resistance and its consequences. Preserving this state of compensation might be an attractive goal for preventing or delaying the transition from insulin resistance to overt diabetes.
    DOI:  https://doi.org/10.1038/s41598-020-69016-9
  41. Proc Natl Acad Sci U S A. 2020 Jul 23. pii: 202003236. [Epub ahead of print]
      Mitochondria and lysosomes are critical for cellular homeostasis, and dysfunction of both organelles has been implicated in numerous diseases. Recently, interorganelle contacts between mitochondria and lysosomes were identified and found to regulate mitochondrial dynamics. However, whether mitochondria-lysosome contacts serve additional functions by facilitating the direct transfer of metabolites or ions between the two organelles has not been elucidated. Here, using high spatial and temporal resolution live-cell microscopy, we identified a role for mitochondria-lysosome contacts in regulating mitochondrial calcium dynamics through the lysosomal calcium efflux channel, transient receptor potential mucolipin 1 (TRPML1). Lysosomal calcium release by TRPML1 promotes calcium transfer to mitochondria, which was mediated by tethering of mitochondria-lysosome contact sites. Moreover, mitochondrial calcium uptake at mitochondria-lysosome contact sites was modulated by the outer and inner mitochondrial membrane channels, voltage-dependent anion channel 1 and the mitochondrial calcium uniporter, respectively. Since loss of TRPML1 function results in the lysosomal storage disorder mucolipidosis type IV (MLIV), we examined MLIV patient fibroblasts and found both altered mitochondria-lysosome contact dynamics and defective contact-dependent mitochondrial calcium uptake. Thus, our work highlights mitochondria-lysosome contacts as key contributors to interorganelle calcium dynamics and their potential role in the pathophysiology of disorders characterized by dysfunctional mitochondria or lysosomes.
    Keywords:  TRPML1; calcium; lysosomal storage disorder; mitochondria–lysosome contacts; interorganelle membrane contact sites
    DOI:  https://doi.org/10.1073/pnas.2003236117
  42. Nat Commun. 2020 Jul 24. 11(1): 3701
      Despite its importance in human cancers, including colorectal cancers (CRC), oncogenic KRAS has been extremely challenging to target therapeutically. To identify potential vulnerabilities in KRAS-mutated CRC, we characterize the impact of oncogenic KRAS on the cell surface of intestinal epithelial cells. Here we show that oncogenic KRAS alters the expression of a myriad of cell-surface proteins implicated in diverse biological functions, and identify many potential surface-accessible therapeutic targets. Cell surface-based loss-of-function screens reveal that ATP7A, a copper-exporter upregulated by mutant KRAS, is essential for neoplastic growth. ATP7A is upregulated at the surface of KRAS-mutated CRC, and protects cells from excess copper-ion toxicity. We find that KRAS-mutated cells acquire copper via a non-canonical mechanism involving macropinocytosis, which appears to be required to support their growth. Together, these results indicate that copper bioavailability is a KRAS-selective vulnerability that could be exploited for the treatment of KRAS-mutated neoplasms.
    DOI:  https://doi.org/10.1038/s41467-020-17549-y
  43. Nat Metab. 2020 Jul;2(7): 566-571
      Lactate, perhaps the best-known metabolic waste product, was first isolated from sour milk, in which it is produced by lactobacilli. Whereas microbes also generate other fermentation products, such as ethanol or acetone, lactate dominates in mammals. Lactate production increases when the demand for ATP and oxygen exceeds supply, as occurs during intense exercise and ischaemia. The build-up of lactate in stressed muscle and ischaemic tissues has established lactate's reputation as a deleterious waste product. In this Perspective, we summarize emerging evidence that, in mammals, lactate also serves as a major circulating carbohydrate fuel. By providing mammalian cells with both a convenient source and sink for three-carbon compounds, circulating lactate enables the uncoupling of carbohydrate-driven mitochondrial energy generation from glycolysis. Lactate and pyruvate together serve as a circulating redox buffer that equilibrates the NADH/NAD ratio across cells and tissues. This reconceptualization of lactate as a fuel-analogous to how Hans Christian Andersen's ugly duckling is actually a beautiful swan-has the potential to reshape the field of energy metabolism.
    DOI:  https://doi.org/10.1038/s42255-020-0243-4
  44. Nat Commun. 2020 Jul 20. 11(1): 3639
      Integrated analysis of genomes, transcriptomes, proteomes and drug responses of cancer cell lines (CCLs) is an emerging approach to uncover molecular mechanisms of drug action. We extend this paradigm to measuring proteome activity landscapes by acquiring and integrating quantitative data for 10,000 proteins and 55,000 phosphorylation sites (p-sites) from 125 CCLs. These data are used to contextualize proteins and p-sites and predict drug sensitivity. For example, we find that Progesterone Receptor (PGR) phosphorylation is associated with sensitivity to drugs modulating estrogen signaling such as Raloxifene. We also demonstrate that Adenylate kinase isoenzyme 1 (AK1) inactivates antimetabolites like Cytarabine. Consequently, high AK1 levels correlate with poor survival of Cytarabine-treated acute myeloid leukemia patients, qualifying AK1 as a patient stratification marker and possibly as a drug target. We provide an interactive web application termed ATLANTiC (http://atlantic.proteomics.wzw.tum.de), which enables the community to explore the thousands of novel functional associations generated by this work.
    DOI:  https://doi.org/10.1038/s41467-020-17336-9
  45. J Physiol. 2020 Jul 25.
      The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome that varies in size, ranging from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genome thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy. This article is protected by copyright. All rights reserved.
    Keywords:  mitochondria; protein synthesis; ribosomes
    DOI:  https://doi.org/10.1113/JP280359
  46. Nat Metab. 2020 Jan;2(1): 62-80
      Pancreatic ductal adenocarcinoma is particularly metastatic, with dismal survival rates and few treatment options. Stiff fibrotic stroma is a hallmark of pancreatic tumours, but how stromal mechanosensing affects metastasis is still unclear. Here, we show that mechanical changes in the pancreatic cancer cell environment affect not only adhesion and migration, but also ATP/ADP and ATP/AMP ratios. Unbiased metabolomic analysis reveals that the creatine-phosphagen ATP-recycling system is a major mechanosensitive target. This system depends on arginine flux through the urea cycle, which is reflected by the increased incorporation of carbon and nitrogen from L-arginine into creatine and phosphocreatine on stiff matrix. We identify that CKB is a mechanosensitive transcriptional target of YAP, and thus it increases phosphocreatine production. We further demonstrate that the creatine-phosphagen system has a role in invasive migration, chemotaxis and liver metastasis of cancer cells.
    DOI:  https://doi.org/10.1038/s42255-019-0159-z
  47. Nat Metab. 2020 Jul;2(7): 603-611
      The micronutrient selenium is incorporated via the selenocysteine biosynthesis pathway into the rare amino acid selenocysteine, which is required in selenoproteins such as glutathione peroxidases and thioredoxin reductases1,2. Here, we show that selenophosphate synthetase 2 (SEPHS2), an enzyme in the selenocysteine biosynthesis pathway, is essential for survival of cancer, but not normal, cells. SEPHS2 is required in cancer cells to detoxify selenide, an intermediate that is formed during selenocysteine biosynthesis. Breast and other cancer cells are selenophilic, owing to a secondary function of the cystine/glutamate antiporter SLC7A11 that promotes selenium uptake and selenocysteine biosynthesis, which, by allowing production of selenoproteins such as GPX4, protects cells against ferroptosis. However, this activity also becomes a liability for cancer cells because selenide is poisonous and must be processed by SEPHS2. Accordingly, we find that SEPHS2 protein levels are elevated in samples from people with breast cancer, and that loss of SEPHS2 impairs growth of orthotopic mammary-tumour xenografts in mice. Collectively, our results identify a vulnerability of cancer cells and define the role of selenium metabolism in cancer.
    DOI:  https://doi.org/10.1038/s42255-020-0224-7
  48. Nat Metab. 2019 Jan;1(1): 125-132
      The principles governing cellular metabolic operation are poorly understood. Because diverse organisms show similar metabolic flux patterns, we hypothesized that a fundamental thermodynamic constraint might shape cellular metabolism. Here, we develop a constraint-based model for Saccharomyces cerevisiae with a comprehensive description of biochemical thermodynamics including a Gibbs energy balance. Non-linear regression analyses of quantitative metabolome and physiology data reveal the existence of an upper rate limit for cellular Gibbs energy dissipation. By applying this limit in flux balance analyses with growth maximization as the objective function, our model correctly predicts the physiology and intracellular metabolic fluxes for different glucose uptake rates as well as the maximal growth rate. We find that cells arrange their intracellular metabolic fluxes in such a way that, with increasing glucose uptake rates, they can accomplish optimal growth rates but stay below the critical rate limit on Gibbs energy dissipation. Once all possibilities for intracellular flux redistribution are exhausted, cells reach their maximal growth rate. This principle also holds for Escherichia coli and different carbon sources. Our work proposes that metabolic reaction stoichiometry, a limit on the cellular Gibbs energy dissipation rate, and the objective of growth maximization shape metabolism across organisms and conditions.
    Keywords:  Flux Balance Analysis (FBA); Gibbs Energy Dissipation; Glucose Uptake Rate (GURs); Quantitative Metabolomics; Stoichiometric Network Model
    DOI:  https://doi.org/10.1038/s42255-018-0006-7
  49. Nat Protoc. 2020 Jul 20.
      Cysteine is unique among all protein-coding amino acids, owing to its intrinsically high nucleophilicity. The cysteinyl thiol group can be covalently modified by a broad range of redox mechanisms or by various electrophiles derived from exogenous or endogenous sources. Measuring the response of protein cysteines to redox perturbation or electrophiles is critical for understanding the underlying mechanisms involved. Activity-based protein profiling based on thiol-reactive probes has been the method of choice for such analyses. We therefore adapted this approach and developed a new chemoproteomic platform, termed 'QTRP' (quantitative thiol reactivity profiling), that relies on the ability of a commercially available thiol-reactive probe IPM (2-iodo-N-(prop-2-yn-1-yl)acetamide) to covalently label, enrich and quantify the reactive cysteinome in cells and tissues. Here, we provide a detailed and updated workflow of QTRP that includes procedures for (i) labeling of the reactive cysteinome from cell or tissue samples (e.g., control versus treatment) with IPM, (ii) processing the protein samples into tryptic peptides and tagging the probe-modified peptides with isotopically labeled azido-biotin reagents containing a photo-cleavable linker via click chemistry reaction, (iii) capturing biotin-conjugated peptides with streptavidin beads, (iv) identifying and quantifying the photo-released peptides by mass spectrometry (MS)-based shotgun proteomics and (v) interpreting MS data by a streamlined informatic pipeline using a proteomics software, pFind 3, and an automatic post-processing algorithm. We also exemplified here how to use QTRP for mining H2O2-sensitive cysteines and for determining the intrinsic reactivity of cysteines in a complex proteome. We anticipate that this protocol should find broad applications in redox biology, chemical biology and the pharmaceutical industry. The protocol for sample preparation takes 3 d, whereas MS measurements and data analyses require 75 min and <30 min, respectively, per sample.
    DOI:  https://doi.org/10.1038/s41596-020-0352-2
  50. Nat Commun. 2020 Jul 21. 11(1): 3653
      The vasculature represents a highly plastic compartment, capable of switching from a quiescent to an active proliferative state during angiogenesis. Metabolic reprogramming in endothelial cells (ECs) thereby is crucial to cover the increasing cellular energy demand under growth conditions. Here we assess the impact of mitochondrial bioenergetics on neovascularisation, by deleting cox10 gene encoding an assembly factor of cytochrome c oxidase (COX) specifically in mouse ECs, providing a model for vasculature-restricted respiratory deficiency. We show that EC-specific cox10 ablation results in deficient vascular development causing embryonic lethality. In adult mice induction of EC-specific cox10 gene deletion produces no overt phenotype. However, the angiogenic capacity of COX-deficient ECs is severely compromised under energetically demanding conditions, as revealed by significantly delayed wound-healing and impaired tumour growth. We provide genetic evidence for a requirement of mitochondrial respiration in vascular endothelial cells for neoangiogenesis during development, tissue repair and cancer.
    DOI:  https://doi.org/10.1038/s41467-020-17472-2
  51. Nat Metab. 2020 Mar;2(3): 256-269
      The transcriptional role of cMyc (or Myc) in tumorigenesis is well appreciated; however, it remains to be fully established how extensively Myc is involved in the epigenetic regulation of gene expression. Here, we show that by deactivating succinate dehydrogenase complex subunit A (SDHA) via acetylation, Myc triggers a regulatory cascade in cancer cells that leads to H3K4me3 activation and gene expression. We find that Myc facilitates the acetylation-dependent deactivation of SDHA by activating the SKP2-mediated degradation of SIRT3 deacetylase. We further demonstrate that Myc inhibition of SDH-complex activity leads to cellular succinate accumulation, which triggers H3K4me3 activation and tumour-specific gene expression. We demonstrate that acetylated SDHA at Lys 335 contributes to tumour growth in vitro and in vivo, and we confirm increased tumorigenesis in clinical samples. This study illustrates a link between acetylation-dependent SDHA deactivation and Myc-driven epigenetic regulation of gene expression, which is critical for cancer progression.
    DOI:  https://doi.org/10.1038/s42255-020-0179-8
  52. Nat Chem Biol. 2020 Jul 20.
      Mass spectrometry-based discovery proteomics is an essential tool for the proximal readout of cellular drug action. Here, we apply a robust proteomic workflow to rapidly profile the proteomes of five lung cancer cell lines in response to more than 50 drugs. Integration of millions of quantitative protein-drug associations substantially improved the mechanism of action (MoA) deconvolution of single compounds. For example, MoA specificity increased after removal of proteins that frequently responded to drugs and the aggregation of proteome changes across cell lines resolved compound effects on proteostasis. We leveraged these findings to demonstrate efficient target identification of chemical protein degraders. Aggregating drug response across cell lines also revealed that one-quarter of compounds modulated the abundance of one of their known protein targets. Finally, the proteomic data led us to discover that inhibition of mitochondrial function is an off-target mechanism of the MAP2K1/2 inhibitor PD184352 and that the ALK inhibitor ceritinib modulates autophagy.
    DOI:  https://doi.org/10.1038/s41589-020-0572-3
  53. Nat Metab. 2020 Apr;2(4): 335-350
      Plasticity of cancer metabolism can be a major obstacle to efficient targeting of tumour-specific metabolic vulnerabilities. Here, we identify the compensatory mechanisms following the inhibition of major pathways of central carbon metabolism in c-MYC-induced liver tumours. We find that, while inhibition of both glutaminase isoforms (Gls1 and Gls2) in tumours considerably delays tumourigenesis, glutamine catabolism continues, owing to the action of amidotransferases. Synergistic inhibition of both glutaminases and compensatory amidotransferases is required to block glutamine catabolism and proliferation of mouse and human tumour cells in vitro and in vivo. Gls1 deletion is also compensated for by glycolysis. Thus, co-inhibition of Gls1 and hexokinase 2 significantly affects Krebs cycle activity and tumour formation. Finally, the inhibition of biosynthesis of either serine (Psat1-KO) or fatty acid (Fasn-KO) is compensated for by uptake of circulating nutrients, and dietary restriction of both serine and glycine or fatty acids synergistically suppresses tumourigenesis. These results highlight the high flexibility of tumour metabolism and demonstrate that either pharmacological or dietary targeting of metabolic compensatory mechanisms can improve therapeutic outcomes.
    DOI:  https://doi.org/10.1038/s42255-020-0195-8
  54. Biochim Biophys Acta Mol Basis Dis. 2020 Jul 16. pii: S0925-4439(20)30245-3. [Epub ahead of print]1866(11): 165897
      Salt-inducible kinases 3 (SIK3) belong to the AMPK-related family of kinases, which have been implicated in the regulation of cell metabolism, cell polarity remodelling, and epithelial-mesenchymal transition. Elevated SIK3 expressions in breast cancer cells are shown to contribute to tumorigenesis; however, the underlying mechanism remains to be elucidated. In this study, we demonstrate that SIK3 expression is upregulated and concurrently high expression of SIK3 is associated with poor survival in breast cancer. Specifically, SIK3 knockdown revealed that SIK3 is required for the mTOR/Akt signaling pathway and proliferation of breast cancer cells. Furthermore, our findings showed that Emodin (EMO) combined with Berberine (BBR) significantly inhibited SIK3 activity, leading to reduced cell growth, increased cell cycle arrest and apoptosis in breast cancer cells, but not in non-malignant breast epithelial cell line. Mechanistic studies further reveal that EMO and BBR in combined treatment inhibited SIK3-potentiated mTOR-mediated aerobic glycolysis and cell growth in breast cancer cells. Moreover, combination treatments attenuate Akt signaling, thereby inducing G0/G1 phase cell cycle arrest and apoptosis of breast cancer cells in a SIK3-dependent manner. CRISPR/Cas9 or siRNA-mediated SIK3 knockout/knockdown showed an opposite trend in both the luminal and basal-like breast cancer. Collectively, our findings reveal that combination of EMO and BBR attenuates SIK3-driven tumor growth in breast cancer, and thus, EMO and BBR might be a novel SIK3 inhibitor explored into the prevention of breast cancer.
    Keywords:  Apoptosis; Berberine; Breast cancer; Emodin; Metabolism; SIK3
    DOI:  https://doi.org/10.1016/j.bbadis.2020.165897
  55. Aging (Albany NY). 2020 Jul 20. 12
      Colorectal cancer (CRC) is a prevalent worldwide disease in which the antioxidant enzyme peroxiredoxin 2 (PRDX2) plays an important role. To investigate the molecular mechanism of PRDX2 in CRC, we performed bioinformatics analysis of The Cancer Genome Atlas (TCGA) datasets and Gene Expression Omnibus (GEO) DataSets (accession no. GSE81429). Our results suggest that PRDX2 is associated with cell-cycle progression and autophagy activated by the P38 MAPK/FOXO signaling pathway. Using a short-hairpin RNA vector, we verified that PRDX2 is essential for CRC cell proliferation and S-phase progression. Immunostaining, electron microscopy and western blotting assays verified the effect of PRDX2 knockdown on autophagy flux and p38 activation. The P38 activator dehydrocorydaline chloride partially rescued the effects of sh-PRDX2 on the expression of proteins related to cell-cycle progression and autophagy. We verified the correlation between PRDX2 expression and the expression of an array of cell-cycle and autophagy-related genes using data from an independent set of 222 CRC patient samples. A mouse xenoplast model was consistent with in vitro results. Our results suggest that PRDX2 promotes CRC cell-cycle progression via activation of the p38 MAPK pathway.
    Keywords:  P38 pathway; autophagy; cell-cycle; colorectal cancer
    DOI:  https://doi.org/10.18632/aging.103690
  56. Int J Mol Sci. 2020 Jul 17. pii: E5048. [Epub ahead of print]21(14):
      NME3 is a member of the nucleoside diphosphate kinase (NDPK) family that binds to the mitochondrial outer membrane to stimulate mitochondrial fusion. In this study, we showed that NME3 knockdown delayed DNA repair without reducing the cellular levels of nucleotide triphosphates. Further analyses revealed that NME3 knockdown increased fragmentation of mitochondria, which in turn led to mitochondrial oxidative stress-mediated DNA single-strand breaks (SSBs) in nuclear DNA. Re-expression of wild-type NME3 or inhibition of mitochondrial fission markedly reduced SSBs and facilitated DNA repair in NME3 knockdown cells, while expression of N-terminal deleted mutant defective in mitochondrial binding had no rescue effect. We further showed that disruption of mitochondrial fusion by knockdown of NME4 or MFN1 also caused mitochondrial oxidative stress-mediated genome instability. In conclusion, the contribution of NME3 to redox-regulated genome stability lies in its function in mitochondrial fusion.
    Keywords:  DNA damage; NME3; mitochondrial morphology; oxidative stress
    DOI:  https://doi.org/10.3390/ijms21145048
  57. Dev Cell. 2020 Jul 20. pii: S1534-5807(20)30537-2. [Epub ahead of print]54(2): 239-255
      Cellular metabolism in hematopoietic stem cells (HSCs) is an area of intense research interest, but the metabolic requirements of HSCs and their adaptations to their niches during development have remained largely unaddressed. Distinctive from other tissue stem cells, HSCs transition through multiple hematopoietic sites during development. This transition requires drastic metabolic shifts, insinuating the capacity of HSCs to meet the physiological demand of hematopoiesis. In this review, we highlight how mitochondrial metabolism determines HSC fate, and especially focus on the links between mitochondria, endoplasmic reticulum (ER), and lysosomes in HSC metabolism.
    DOI:  https://doi.org/10.1016/j.devcel.2020.06.029
  58. Oncogenesis. 2020 Jul 24. 9(7): 68
      Cancer cells are characterized by the Warburg effect, a shift from mitochondrial respiration to oxidative glycolysis. We report here the crucial role of cyclin D1 in promoting this effect in a cyclin-dependent kinase (CDK)4/6-independent manner in multiple myeloma (MM) cells. We show that the cyclin D1 oncoprotein targets hexokinase 2 (HK2), a major glycolysis regulator, through two original molecular mechanisms in the cytoplasmic and nuclear compartments. In the cytoplasm, cyclin D1 binds HK2 at the outer mitochondrial membrane, and in the nucleus, it binds hypoxia-inducible factor-1α (HIF1α), which regulates HK2 gene transcription. We also show that high levels of HK2 expression are correlated with shorter event-free survival (EFS) and overall survival (OS) in MM patients. HK2 may therefore be considered as a possible target for antimyeloma therapy.
    DOI:  https://doi.org/10.1038/s41389-020-00253-3
  59. J Proteome Res. 2020 Jul 22.
      Cells exhibit a broad spectrum of functions driven by differences in molecular phenotype. Understanding the heterogeneity between and within cell types has led to advances in our ability to diagnose and manipulate biological systems. Heterogeneity within and between tumors still poses a challenge to the development and efficacy of therapeutics. In this 'Perspective' we review the toolkit of protein-level experimental approaches for investigating cellular heterogeneity. We describe how innovative approaches and technical developments have supported the advent of bottom-up single-cell proteomic analysis and present opportunities and challenges within cancer research. Finally, we introduce the concept of 'precision proteomics' and discuss how the advantages and limitations of various experimental approaches render them suitable for different biological systems and questions.
    DOI:  https://doi.org/10.1021/acs.jproteome.0c00338
  60. Cell Rep. 2020 Jul 21. pii: S2211-1247(20)30918-9. [Epub ahead of print]32(3): 107937
      Calorie restriction (CR) extends lifespan through several intracellular mechanisms, including increased DNA repair, leading to fewer DNA mutations that cause age-related pathologies. However, it remains unknown how CR acts on mutation retention at the tissue level. Here, we use Cre-mediated DNA recombination of the confetti reporter as proxy for neutral mutations and follow these mutations by intravital microscopy to identify how CR affects retention of mutations in the intestine. We find that CR leads to increased numbers of functional Lgr5+ stem cells that compete for niche occupancy, resulting in slower but stronger stem cell competition. Consequently, stem cells carrying neutral or Apc mutations encounter more wild-type competitors, thus increasing the chance that they get displaced from the niche to get lost over time. Thus, our data show that CR not only affects the acquisition of mutations but also leads to lower retention of mutations in the intestine.
    Keywords:  Lgr5; calorie restriction; competition; diet; intestine; mutation retention; stem cells
    DOI:  https://doi.org/10.1016/j.celrep.2020.107937