bims-mevinf Biomed News
on Metabolism in viral infections
Issue of 2024–07–21
ten papers selected by
Alexander Ivanov, Engelhardt Institute of Molecular Biology



  1. J Biol Chem. 2024 Jul 11. pii: S0021-9258(24)02050-7. [Epub ahead of print] 107549
      Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry (IP-MS) analysis. The interaction between ACADM and NSP4 was subsequently corroborated through co-immunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid β-oxidation affected PEDV replication for the first time, inhibition of fatty acid β-oxidation reduced PEDV replication. ACADM decreased PEDV-induced β-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid (FFA) levels and subsequent β-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.
    Keywords:  ACADM; AMPK; PEDV; lipophagy; β-oxidation
    DOI:  https://doi.org/10.1016/j.jbc.2024.107549
  2. Plant J. 2024 Jul 15.
      Pathogen infection induces massive reprogramming of host primary metabolism. Lipid and fatty acid (FA) metabolism is generally disrupted by pathogens and co-opted for their proliferation. Lipid droplets (LDs) that play important roles in regulating cellular lipid metabolism are utilized by a variety of pathogens in mammalian cells. However, the function of LDs during pathogenic infection in plants remains unknown. We show here that infection by rice black streaked dwarf virus (RBSDV) affects the lipid metabolism of maize, which causes elevated accumulation of C18 polyunsaturated fatty acids (PUFAs) leading to viral proliferation and symptom development. The overexpression of one of the two novel LD-associated proteins (LDAPs) of maize (ZmLDAP1 and ZmLDAP2) induces LD clustering. The core capsid protein P8 of RBSDV interacts with ZmLDAP2 and prevents its degradation through the ubiquitin-proteasome system mediated by a UBX domain-containing protein, PUX10. In addition, silencing of ZmLDAP2 downregulates the expression of FA desaturase genes in maize, leading to a decrease in C18 PUFAs levels and suppression of RBSDV accumulation. Our findings reveal that plant virus may recruit LDAP to regulate cellular FA metabolism to promote viral multiplication and infection. These results expand the knowledge of LD functions and viral infection mechanisms in plants.
    Keywords:  C18 polyunsaturated fatty acids; LD‐associated protein; Zea mays; lipid droplets (LDs); rice black streaked dwarf virus (RBSDV)
    DOI:  https://doi.org/10.1111/tpj.16934
  3. bioRxiv. 2024 Jul 05. pii: 2024.07.04.602134. [Epub ahead of print]
      RNA virus infections are composed of a diverse mix of viral genomes that arise from low fidelity in replication within cells. The interactions between "defective" and full-length viral genomes have been shown to shape pathogenesis, leading to intense research into employing these to develop novel antivirals. In particular, Influenza A defective viral genomes (DVGs) have been associated with milder clinical outcomes. Yet, the full potential of DVGs as broad-spectrum antivirals remains untapped due to the unknown mechanisms of their de novo production. Much of the research into the factors affecting defective viral genome production has focused on the virus, while the role of the host has been neglected. We recently showed that altering host cell metabolism away from pro-growth pathways using alpelisib increased the production of Influenza A defective viral genomes. To uncover other drugs that could induce infections to create more DVGs, we subjected active influenza infections of the two circulating human subtypes (A/H1N1 & A/H3N2) to a screen of metabolites, metabolic signaling molecules, and cyanobacteria-derived biologics, after which we quantified the defective viral genomes (specifically deletion-containing viral genomes, DelVGs) and total viral genomes using third generation long-read sequencing. Here we show that metabolites and signaling molecules of host cell central carbon metabolism can significantly alter DelVG production early in Influenza A infection. Adenosine, emerged as a potent inducer of defective viral genomes, significantly amplifying DelVG production across both subtypes. Insulin had similar effects, albeit subtype-specific, predominantly enhancing polymerase segment DVGs in TX12 infections. Tricarboxylic Acid (TCA) cycle inhibitors 4-octyl itaconate and UK5099, along with the purine analog favipiravir, increased total viral genome production across subtypes. Cyanobacterial extracts primarily affected DVG and total viral genome production in TX12, with a specific, almost complete shutdown of influenza antigenic segments. These results underscore the influence of host metabolic pathways on DVG production and suggest new avenues for antiviral intervention, including PI3K-AKT and Ras-MAPK signaling pathways, TCA cycle metabolism, purine-pyrimidine metabolism, polymerase inhibition, and cyanotherapeutic approaches. More broadly, our findings suggest that the social interactions observed between defective and full-length viral genomes, depend not only on the viral actors, but can be altered by the stage provided by the host. Our study advances our fundamental understanding of DVG production mechanisms and highlights the potential of targeting host metabolism to develop broad-spectrum influenza therapeutics.
    DOI:  https://doi.org/10.1101/2024.07.04.602134
  4. bioRxiv. 2024 Jul 02. pii: 2024.07.02.601567. [Epub ahead of print]
      Vaccinia virus (VACV), the prototype poxvirus, actively reprograms host cell metabolism upon infection. However, the nature and molecular mechanisms remain largely elusive. Given the diverse nutritional exposures of cells in different physiological contexts, it is essential to understand how VACV may alter various metabolic pathways in different nutritional conditions. In this study, we established the importance of de novo pyrimidine biosynthesis in VACV infection. We elucidated the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor, in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. While nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via mTORC1-S6K1 signaling axis, in conditions where glutamine and asparagine are absent. However, unlike its cellular homolog, epidermal growth factor (EGF), VGF peptide alone in the absence of VACV infection has minimal ability to activate CAD, suggestive of the involvement of other viral factor(s) and differential functions to EGF acquired during poxvirus evolution. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, namely, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.
    Importance: Our research provides new insights into how VACV alters the mTORC1-CAD signaling axis under different nutritional cues. The identification of how VACV regulates a major enzyme, CAD, within the de novo pyrimidine synthesis pathway, establishes a molecular mechanism for determining how VACV reshapes this essential pathway, necessary for facilitating efficient VACV replication. We further emphasize that, despite nutrient-poor conditions, which typically inhibit mTORC1 activation, VACV can stimulate mTORC1. We identify its early growth factor, VGF, as an important factor for this stimulation of mTORC1 and its downstream effector CAD, revealing a new mechanism for how VACV sustains mTORC1-CAD axis activation under these nutrient deficient conditions. This work provides fresh insights into the molecular mechanisms of mTORC1-CAD regulation, which has the potential to be utilized to enhance VACV as an oncolytic tool, vaccine vector and aid in the development of antiviral drugs.
    DOI:  https://doi.org/10.1101/2024.07.02.601567
  5. FASEB J. 2024 Jul 31. 38(14): e23827
      The COVID-19 pandemic, caused by SARS-CoV-2, has had a significant worldwide impact, affecting millions of people. COVID-19 is characterized by a heterogenous clinical phenotype, potentially involving hyperinflammation and prolonged tissue damage, although the exact underlying mechanisms are yet to be fully understood. Sphingolipid metabolites, which govern cell survival and proliferation, have emerged as key players in inflammatory signaling and cytokine responses. Given the complex metabolic pathway of sphingolipids, this study aimed to understand their potential role in the pathogenesis of COVID-19. We conducted a comprehensive examination of sphingolipid modulations across groups classified based on disease severity, incorporating a time-course in serum and urine samples. Several sphingolipids, including sphingosine, lactosylceramide, and hexosylceramide, emerged as promising indicators of COVID-19 severity, as validated by correlation analyses conducted on both serum and urine samples. Other sphingolipids, such as sphingosine 1-phosphate, ceramides, and deoxy-dihydroceramides, decreased in both COVID-19 patients and individuals with non-COVID infectious diseases. This suggests that these sphingolipids are not specifically associated with COVID-19 but rather with pathological conditions caused by infectious diseases. Our analysis of urine samples revealed elevated levels of various sphingolipids, with changes dependent on disease severity, potentially highlighting the acute kidney injury associated with COVID-19. This study illuminates the intricate relationship between disturbed sphingolipid metabolism, COVID-19 severity, and clinical factors. These findings provide valuable insights into the broader landscape of inflammatory diseases.
    Keywords:  COVID‐19; hexosylceramide (HexCer); lactosylceramide (LacCer); sphingolipid; sphingosine (Sph)
    DOI:  https://doi.org/10.1096/fj.202401099R
  6. Vet Med Sci. 2024 Jul;10(4): e1536
       BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe inflammatory response, respiratory disease and sow reproductive failure. Quercetin is among the widely occurring polypheno found abundantly in nature. Quercetin has anti-inflammatory, anti-oxidative and anti-viral properties.
    OBJECTIVES: This study aimed to explore the effect and mechanism of quercetin on PRRSV-induced inflammation in MARC-145 cells.
    METHODS: Observing the cytopathic effect and measurements of inflammatory markers in MARC-145 cells collectively demonstrate that quercetin elicits a curative effect on PRRSV-induced inflammation. Liquid chromatography-mass spectrometry was further used for a non-targeted metabolic analysis of the role of quercetin in the metabolic regulation of PRRSV inflammation in MARC-145 cells.
    RESULTS: It was shown that quercetin attenuated PRRSV-induced cytopathy in MARC-145 cells. Quercetin treatment inhibited PRRSV replication in MARC-145 cells in a dose-dependent manner. We also found that quercetin inhibited PRRSV-induced mRNA expression and secretion levels of tumour necrosis factor-α, interleukin 1β and interleukin 6. Metabolomics analysis revealed that quercetin ameliorated PRRSV-induced inflammation. Pathway analysis results revealed that PRRSV-induced pathways including arachidonic acid metabolism, linoleic acid, glycerophospholipid and alanine, aspartate and glutamate metabolism were suppressed by quercetin. Moreover, we confirmed that quercetin inhibited the activation of NF-κB/p65 pathway, probably by attenuating PLA2, ALOX and COX mRNA expression.
    CONCLUSIONS: These results provide a crucial insight into the molecular mechanism of quercetin in alleviating PRRSV-induced inflammation.
    Keywords:  inflammation; metabolomics; porcine reproductive and respiratory syndrome virus (PRRSV); quercetin
    DOI:  https://doi.org/10.1002/vms3.1536
  7. Proc Natl Acad Sci U S A. 2024 Jul 23. 121(30): e2321972121
      Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.
    Keywords:  EUK8; SARS-CoV-2; antioxidant therapy; mCAT; mitochondria
    DOI:  https://doi.org/10.1073/pnas.2321972121
  8. Hum Gene Ther. 2024 Jul 13.
      A potential therapeutic approach for cancer treatment is target oxidative phosphorylation and glycolysis simultaneously. The matrix protein of vesicular stomatitis virus (VSV MP) can target the surface of mitochondria, causing morphological changes that may be associated with mitochondrial dysfunction and oxidative phosphorylation inhibition. Previous research has shown that mitochondrial abnormalities can direct glucose metabolism towards glycolysis. Thus, after treatment with VSV MP, glycolysis inhibition is necessary to completely block glucose metabolism and eradicate cancer. Here, to inhibit glycolysis, the 2-deoxy-D-glucose (2-DG), a synthetic glucose analog, was used to combine with VSV MP to treat cancer. This study aims to determine how VSV MP effects the glucose bioenergetic metabolism of cancer cells and to evaluate the synergistic effect of 2-DG when combined with VSV. Our results indicated that in U87 and C6 glioblastoma cell lines, VSV MP caused mitochondrial membrane potential loss, cytochrome c release, and glucose bioenergetics metabolism reprogramming. When combined with 2-DG, VSV MP synergistically aggravated cell viability, apoptosis and G2/M phase arrest. Meanwhile, the combination therapy exacerbated ATP depletion, activated AMPK, and inhibited mTOR signaling pathways. In addition, 2-DG treatment alone induced autophagy in glioblastoma cells, however, VSV MP inhibited the autophagy induced by 2-DG in combined treatment, and finally contributed to the enhanced cytotoxic effect of the combination strategy in U87 and C6 cancer cells. In the orthotopic U87 glioblastoma model and subcutaneous C6 glioblastoma model, the combined treatment led to significant tumor regression and prolonged survival. A potent therapeutic approach for treating glioblastoma may be found in the combination of VSV MP and glycolytic inhibitors.
    DOI:  https://doi.org/10.1089/hum.2024.002
  9. Infect Agent Cancer. 2024 Jul 15. 19(1): 31
      Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
    Keywords:  Hepatitis B Virus; Hepatocellular Carcinoma; Immune System; Lactate
    DOI:  https://doi.org/10.1186/s13027-024-00593-4
  10. Caspian J Intern Med. 2024 ;15(3): 451-458
       Background: Hepatitis A is a widespread viral infection with significant public health implications. Assessing glucose 6-phosphate dehydrogenase (G6PD) deficiency in hepatitis A patients is essential for various reasons, including prognosis, disease severity evaluation, encephalopathy risk identification, tailored management, and advancing scientific understanding. This study aimed to investigate the prevalence and clinical implications of G6PD impairment in individuals with fulminant hepatitis A.
    Methods: A cross-sectional descriptive analysis was conducted, involving hospitalized patients with fulminant hepatitis A. Demographic data, prevalence rates, and clinical findings were recorded in a database. The diagnosis of hepatitis A infection was confirmed using an anti-HAV IgM antibody test, and G6PD enzyme activity was measured with a fluorescent spot assay.
    Results: Out of 81 patients with hepatitis A, 57 (70.4%) were males, and 24 (29.5%) were females, with an average age of 24.6 years. Dark yellow urine and anorexia were the most common clinical symptoms. Notably, 30 (37%) patients lacked G6PD. The group with G6PD deficiency showed significantly higher rates of encephalopathy and mortality (P<0.01), along with elevated bilirubin (P=0.00), abnormal coagulation parameters, and low hemoglobin levels (P=0.00).
    Conclusion: In light of these findings, the present study proposes the implementation of routine G6PD level assessments and the evaluation of other relevant markers in regions where hepatitis A is endemic. Furthermore, the study underscores the need for vigilant monitoring of hemolysis and encephalopathy in affected patients to optimize clinical management and reduce morbidity and mortality associated with this condition.
    Keywords:  Fulminant hepatitis; G6PD Deficiency; Hepatitis A
    DOI:  https://doi.org/10.22088/cjim.15.3.451