bims-mevinf Biomed News
on Metabolism in viral infections
Issue of 2023–11–05
five papers selected by
Alexander Ivanov, Engelhardt Institute of Molecular Biology



  1. Front Microbiol. 2023 ;14 1251065
       Introduction: SARS-CoV-2 subverts host cell processes to facilitate rapid replication and dissemination, and this leads to pathological inflammation.
    Methods: We used niclosamide (NIC), a poorly soluble anti-helminth drug identified initially for repurposed treatment of COVID-19, which activates the cells' autophagic and lipophagic processes as a chemical probe to determine if it can modulate the host cell's total lipid profile that would otherwise be either amplified or reduced during SARS-CoV-2 infection.
    Results: Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of SARS-CoV-2 infected Vero E6 cells, especially with triglycerides, which were elevated early during virus replication, but decreased thereafter, as well as plasmalogens, which were elevated at later timepoints during virus replication, but were also elevated under normal cell growth. These findings suggested a complex interplay of lipid profile reorganization involving plasmalogen metabolism. We also observed that NIC treatment of both low and high viral loads does not affect virus entry. Instead, NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which we found elevated during virus infection in the absence of NIC, resulting in a significant reduction in the production of infectious virions. Unexpectedly, at higher viral loads, NIC treatment also resulted in elevated triglyceride levels, and induced significant changes in phospholipid metabolism.
    Discussion: We posit that future screens of approved or new partner drugs should prioritize compounds that effectively counter SARS-CoV-2 subversion of lipid metabolism, thereby reducing virus replication, egress, and the subsequent regulation of key lipid mediators of pathological inflammation.
    Keywords:  COVID-19; RNA sequencing; antiviral; autophagy; lipidomics; lipophagy; metabolism
    DOI:  https://doi.org/10.3389/fmicb.2023.1251065
  2. Front Immunol. 2023 ;14 1251120
      Patients with chronic lung disease, obesity, and other co-morbid conditions are at increased risk of severe illness and death when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hypercapnia, the elevation of CO2 in blood and tissue, commonly occurs in patients with severe acute and chronic lung disease, including those with pulmonary infections, and is also associated with high mortality risk. We previously reported that hypercapnia increases viral replication and mortality of influenza A virus infection in mice. We have also shown that culture in elevated CO2 upregulates expression of cholesterol synthesis genes in primary human bronchial epithelial cells. Interestingly, factors that increase the cholesterol content of lipid rafts and lipid droplets, platforms for viral entry and assembly, enhance SARS-CoV-2 infection. In the current study, we investigated the effects of hypercapnia on ACE2 expression and entry of SARS-CoV-2 pseudovirus (p-SARS-CoV-2) into airway epithelial cells. We found that hypercapnia increased ACE2 expression and p-SARS-CoV-2 uptake by airway epithelium in mice, and in cultured VERO and human bronchial epithelial cells. Hypercapnia also increased total cellular and lipid raft-associated cholesterol in epithelial cells. Moreover, reducing cholesterol synthesis with inhibitors of sterol regulatory element binding protein 2 (SREBP2) or statins, and depletion of cellular cholesterol, each blocked the hypercapnia-induced increases in ACE2 expression and p-SARS-CoV-2 entry into epithelial cells. Cigarette smoke extract (CSE) also increased ACE2 expression, p-SARS-CoV-2 entry and cholesterol accumulation in epithelial cells, an effect not additive to that of hypercapnia, but also inhibited by statins. These findings reveal a mechanism that may account, in part, for poor clinical outcomes of SARS-CoV-2 infection in patients with advanced lung disease and hypercapnia, and in those who smoke cigarettes. Further, our results suggest the possibility that cholesterol-lowering therapies may be of particular benefit in patients with hypercapnia when exposed to or infected with SARS-CoV-2.
    Keywords:  ACE2; COVID-19; SARS-CoV-2; cholesterol; hypercapnia; statins
    DOI:  https://doi.org/10.3389/fimmu.2023.1251120
  3. J Mol Recognit. 2023 Nov 02. e3066
      Hepatitis C virus infection causes chronic diseases such as cirrhosis and hepatocellular carcinoma. Metabolomics research has been shown to be linked to pathophysiologic pathways in liver illnesses. The aim of this study was to investigate the serum metabolic profile of patients with chronic hepatitis C (CHC) infection and to identify underlying mechanisms as well as potential biomarkers associated with the disease. Nuclear magnetic resonance (NMR) was used to evaluate the sera of 83 patients with CHC virus and 52 healthy control volunteers (NMR). Then, multivariate statistical analysis was used to find distinguishing metabolites between the two groups. Sixteen out of 40 metabolites including include 3-HB, betaine, carnitine, creatinine, fucose, glutamine, glycerol, isopropanol, lysine, mannose, methanol, methionine, ornithine, proline, serine, and valine-were shown to be significantly different between the CHC and normal control (NC) groups (variable importance in projection >1 and p < 0.05). All the metabolic perturbations in this disease are associated with pathways of Glycine, serine, and threonine metabolism, glycerolipid metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, alanine, aspartate, and glutamate metabolism. Multivariate statistical analysis constructed using these expressed metabolites showed CHC patients can be discriminated from NCs with high sensitivity (90%) and specificity (99%). The metabolomics approach may expand the diagnostic armamentarium for patients with CHC while contributing to a comprehensive understanding of disease mechanisms.
    Keywords:  NMR; biomarkers; chronic hepatitis C (CHC); hepatitis C virus (HCV); metabolomics
    DOI:  https://doi.org/10.1002/jmr.3066
  4. J Virol. 2023 Nov 01. e0097223
      The impact of different stress conditions on the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) primary infection that can occur in vivo remains largely unknown. We hypothesized that KSHV can establish a latency or lytic cycle following de novo infection, depending on the conditions of the cellular environment. Previous studies showed that hypoxia is a natural stress condition that promotes lytic reactivation and contributes to KSHV pathogenesis, but its effect on de novo KSHV infection is unknown. To test the effect of hypoxia on KSHV infection, we infected cells under normoxia and hypoxia, performed a comparative analysis of viral gene expression and viral replication, and tested chromatinization of the KSHV genome during infection. We found that hypoxia induces viral lytic gene expression and viral replication following de novo infection in several biologically relevant cell types, in which the virus normally establishes latency under normoxia. We also found that hypoxia reduces the level of repressive heterochromatin and promotes the formation of a transcriptionally permissive chromatin on the incoming viral DNA during infection. We demonstrate that silencing hypoxia-inducible factor-1α (HIF-1α) during hypoxia abrogates lytic KSHV infection, while the overexpression of HIF-1α under normoxia is sufficient to drive lytic KSHV infection. Also, we determined that the DNA-binding domain and the N-terminal but not the C-terminal transactivation domain of HIF-1α are required for HIF-1α-induced lytic gene expression. Altogether, our data indicate that HIF-1α accumulation, which can be induced by hypoxia, prevents the establishment of latency and promotes lytic KSHV infection following primary infection. IMPORTANCE The current view is that the default pathway of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the establishment of latency, which is a prerequisite for lifelong infection and viral oncogenesis. This view about KSHV infection is supported by the observations that KSHV latently infects most of the cell lines cultured in vitro in the absence of any environmental stresses that may occur in vivo. The goal of this study was to determine the effect of hypoxia, a natural stress stimulus, on primary KSHV infection. Our data indicate that hypoxia promotes euchromatin formation on the KSHV genome following infection and supports lytic de novo KSHV infection. We also discovered that hypoxia-inducible factor-1α is required and sufficient for allowing lytic KSHV infection. Based on our results, we propose that hypoxia promotes lytic de novo infection in cells that otherwise support latent infection under normoxia; that is, the environmental conditions can determine the outcome of KSHV primary infection.
    Keywords:  Kaposi’s sarcoma-associated herpesvirus; hypoxia; lytic cycle; lytic gene expression; primary infection
    DOI:  https://doi.org/10.1128/jvi.00972-23
  5. bioRxiv. 2023 Oct 16. pii: 2023.10.12.562112. [Epub ahead of print]
      As obligate intracellular pathogens, viruses often activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the salvage NAD + synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses with unknown mechanism. Here we report that NAMPT restricts herpes simplex virus 1 (HSV-1) replication via phosphoribosyl-hydrolase activity toward key viral structural proteins, independent of NAD + synthesis. Deep mining of enriched phosphopeptides of HSV-1-infected cells identified phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins. Indeed, NAMPT de-phosphoribosylates viral proteins in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Moreover, loss of NAMPT renders mice highly susceptible to HSV-1 infection. The work describes a hidden enzyme activity of a metabolic enzyme in viral infection and host defense, offering a system to interrogate roles of phosphoribosylation in metazoans.
    DOI:  https://doi.org/10.1101/2023.10.12.562112