Bioanalysis. 2025 Jun 05. 1-20
Folates are group of water-soluble B-vitamins indispensable to one carbon metabolism as acceptor and donor of methyl group during purine and pyrimidine biosynthesis, DNA and histone methylations, and in mitochondrial protein translation. The deficiencies associated with risk of neural tube defect, cancer, cardiac and psychiatric disorders. Thus, detecting and quantifying folate species accurately become a crucial step in food omics, disease metabolomics, proteomics, genomics, toxicology, and pharmacokinetics, and regulatory sciences. However, the detection and quantitative determination of folate species yet subjected to analytical challenges due to physio-chemical instability, structural similarity, ultra-trace availability. Advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) method enabled the detection and quantification of folate species in short span of time using low sample volume. However, risk of inter conversion, degradation or loss during sample preparation, coupled with folate isomers and isobars challenged the selectivity, specificity and sensitivity for quantification by LC-MS/MS at trace level. Systematic literature search was conducted through major indexing databases such as Pub med, Embase, and Google Scholar to include the most relevant articles published 2010-2025 in preparing the review highlighting the challenges of folate species analysis in food and biological matrices from sample preparation to mass spectrometry detection with a future perspective on innovative optimization methods.
Keywords: Folate species; LC-MS/MS; analytical challenges; biological matrices; food; innovative methods; sample preparation