bims-metlip Biomed News
on Methods and protocols in metabolomics and lipidomics
Issue of 2024‒05‒12
twenty-two papers selected by
Sofia Costa, Matterworks



  1. J Pharm Biomed Anal. 2024 Apr 23. pii: S0731-7085(24)00219-X. [Epub ahead of print]245 116179
      A sensitive, reproducible, robust, high-throughput ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous quantification of fexofenadine and olmesartan in human serum. Samples (50 µL) undergo protein precipitation prior to UPLC-MS/MS analysis. The analytes were separated using an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 µm) at a flow rate of 0.5 mL/min using a gradient elution with a total run time of 4 min. The analytes were detected in positive ion mode and selected reaction monitoring (SRM) was used for quantitation. The standard curve concentration range was 1.0-500.0 ng/mL for both analytes and each analyte showed excellent linearity with correlation coefficients (R2 > 0.99). The intra- and inter-day accuracy and precision were ±15% for each analyte, and excellent recovery was demonstrated (93-98%) for both analytes. The method is well suited for high-throughput quantitative determination of fexofenadine and olmesartan simultaneously and was successfully applied to an in vivo pharmacokinetic and transporter phenotyping study in humans.
    Keywords:  Fexofenadine; LC-MS/MS; Mass spectrometry; Olmesartan; Pharmacokinetics
    DOI:  https://doi.org/10.1016/j.jpba.2024.116179
  2. Curr Protoc. 2024 May;4(5): e1043
      Trypanosoma brucei (Tb) is the causative agent of human African trypanosomiasis (HAT), also known as sleeping sickness, which can be fatal if left untreated. An understanding of the parasite's cellular metabolism is vital for the discovery of new antitrypanosomal drugs and for disease eradication. Metabolomics can be used to analyze numerous metabolic pathways described as essential to Tb. brucei but has some limitations linked to the metabolites' physicochemical properties and the extraction process. To develop an optimized method for extracting and analyzing Tb. brucei metabolites, we tested the three most commonly used extraction methods, analyzed the extracts by hydrophilic interaction liquid chromatography high-resolution mass spectrometry (HILIC LC-HRMS), and further evaluated the results using quantitative criteria including the number, intensity, reproducibility, and variability of features, as well as qualitative criteria such as the specific coverage of relevant metabolites. Here, we present the resulting protocols for untargeted metabolomic analysis of Tb. brucei using (HILIC LC-HRMS). © 2024 Wiley Periodicals LLC. Basic Protocol 1: Culture of Trypanosoma brucei brucei parasites Basic Protocol 2: Preparation of samples for metabolomic analysis of Trypanosoma brucei brucei Basic Protocol 3: LC-HRMS-based metabolomic data analysis of Trypanosoma brucei brucei.
    Keywords:  Trypanosoma brucei; extraction; mass spectrometry; metabolomics
    DOI:  https://doi.org/10.1002/cpz1.1043
  3. Nat Commun. 2024 May 06. 15(1): 3777
      Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions, and data acquisition techniques, significantly impacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of omics research, but current methods are not optimal for the removal of batch effects without compressing the genuine biological variation under study. We propose a suite of Batch Effect Removal Neural Networks (BERNN) to remove batch effects in large LC-MS experiments, with the goal of maximizing sample classification performance between conditions. More importantly, these models must efficiently generalize in batches not seen during training. A comparison of batch effect correction methods across five diverse datasets demonstrated that BERNN models consistently showed the strongest sample classification performance. However, the model producing the greatest classification improvements did not always perform best in terms of batch effect removal. Finally, we show that the overcorrection of batch effects resulted in the loss of some essential biological variability. These findings highlight the importance of balancing batch effect removal while preserving valuable biological diversity in large-scale LC-MS experiments.
    DOI:  https://doi.org/10.1038/s41467-024-48177-5
  4. Anal Biochem. 2024 May 03. pii: S0003-2697(24)00100-3. [Epub ahead of print]691 115556
      we developed an effective protein precipitation method for determination of levamlodipine in human plasma using LC-MS/MS. Sample extraction was carried out by using liquid-liquid extraction in 96-well plate format. (S)-Amlodipine-d4 was used as internal standard (IS). The chromatographic separation was achieved using Philomen Chiral MX (2) column (3 μm, 2.1 × 100 mm). Mobile phase A was comprised of Acetonitrile (ACN), Mono ethanol amine (MEA) and Iso-Propyl alcohol (IPA) (1000:1:10, v/v/v), Mobile phase B was IPA-ACN (2:1, v/v). The flow rate was 0.4 mL/min. The total run time of each sample was 4.0 min with gradient elution. LC-MS/MS spectra were generated in positive ion mode, and multiple reaction monitoring (MRM) was used to detect the following transitions: m/z 409.20 → 238.15 for levamlodipine and 415.25 → 240.20 for (S)-Amlodipine-d4 (the IS). The method was linear from 50 to 10000 pg/mL(R2=0.9988489),and the lower limit of quantification (LLOQ) was 50 pg/mL. This method was applied to a bioequivalence study of levamlodipine.
    Keywords:  Chiral chromatography; LC–MS/MS,96-Well plate; Levamlodipine
    DOI:  https://doi.org/10.1016/j.ab.2024.115556
  5. Anal Sci Adv. 2023 May;4(3-4): 60-80
      Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of 'omics' to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.
    Keywords:  analytical science; exercise; mass spectrometry; nutrition; sport
    DOI:  https://doi.org/10.1002/ansa.202300003
  6. Anal Chem. 2024 May 06.
      Polypropylene microcentrifuge tubes (MCTs) are increasingly used in lipidome sample preparation. In the absence of a comprehensive study evaluating ramifications of plasticware utilization in mass spectrometry-based lipidomic analyses, we conducted a systematic analysis to elucidate potential negative effects ascribable to labware contamination in serum lipidomics. During serum lipid extractions, tested glassware introduced 24 labware contaminants. In contrast, Eppendorf polypropylene MCTs contributed 485 contaminant features, many of which could be erroneously putatively identified as lipids via their m/z values. Eppendorf MCTs contamination engendered severe ion-suppression of 40 low abundance serum lipids, while generating mild to modest lipid ion-suppression across a multitude of higher abundance coeluting lipids. Less compatible polypropylene MCTs from an alternative manufacturer introduced a staggering 2,949 contaminant m/z values, severely affecting 75 coeluting serum lipids and causing more frequent and pronounced ion-suppression instances. Furthermore, by performing serum extractions with varied initial volumes, it was ascertained that labware-induced lipid ion-suppression is a dynamic phenomenon, contingent on both lipid and labware contaminant concentrations where low-abundance lipids are disproportionately impacted by coelutes of suppressive contaminants. In addition to lipid ion-suppression, the identification and quantification of 7 fatty acid endogenous serum lipids were compromised by the leaching of structurally identical surfactants from MCTs. MCTs artificially introduced 10 additional primary amides extraneous to serum samples. Utmost caution is imperative in interpreting data concerning primary amides and fatty acids when employing plastic labware. Through this investigation, we aspire to elevate awareness regarding the pernicious impact of labware contamination on lipidome analysis.
    DOI:  https://doi.org/10.1021/acs.analchem.3c05433
  7. J Chromatogr A. 2024 Apr 30. pii: S0021-9673(24)00331-5. [Epub ahead of print]1725 464957
      This study focuses on the purification and detection of glufosinate (GLUF) and its metabolites N-acetyl GLUF and MPP in plasma samples. A Dikma Polyamino HILIC column was used for the effective retention and separation of GLUF and its metabolites, and the innovative addition of a low concentration of ammonium fluoride solution to the mobile phase effectively improved the detection sensitivity of the target analytes. Monodisperse core-shell weak cation exchange (WCX)/C18 bifunctional magnetic polymer composites (Fe3O4@WCX/C18) were prepared in a controllable manner, and their morphology and composition were fully characterized. The Fe3O4@WCX/C18 microspheres were used as a magnetic solid-phase extraction (MSPE) adsorbent for the sample purification and detection of GLUF and its metabolites in plasma samples combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The purification conditions of Fe3O4@WCX/C18 microspheres for GLUF and its metabolites in spiked plasma samples were optimized to achieve the best MSPE efficiency. The purification mechanisms of the target analytes in plasma samples include electrostatic attraction and hydrophobic interactions. Furthermore, the effect of the molar ratio of the two functional monomers 4-VBA and 1-octadecene in the adsorbent was optimized and it shows that the bifunctional components WCX/C18 have a synergistic effect on the determination of GLUF and its metabolites in plasma samples. In addition, the present study compared the purification performance of the Fe3O4@WCX/C18 microsphere-based MSPE method with that of the commercial Oasis WCX SPE method, and the results showed that the Fe3O4@WCX/C18 microsphere-based MSPE method established in this work had a stronger ability to remove matrix interferences. Under optimal purification conditions, the recoveries of GLUF and its metabolites in plasma were 87.6-111 % with relative standard deviations (RSDs) ranging from 0.2 % to 4.8 %. The limits of detection (LODs, S/N≥3) and limits of quantification (LOQs, S/N≥10) were 0.10-0.18 μg/L and 0.30-0.54 μg/L, respectively. The MSPE-LC-MS/MS method developed in this study is fast, simple, accurate and sensitive and can be used to confirm GLUF intoxication based not only on the detection of the GLUF prototype but also on the detection of its two metabolites.
    Keywords:  Glufosinate; HILIC based LC-MS/MS; Magnetic solid-phase extraction (MSPE); Metabolites; WCX/C(18) bifunctional magnetic polymer composites (Fe(3)O(4)@WCX/C(18))
    DOI:  https://doi.org/10.1016/j.chroma.2024.464957
  8. J Pharm Biomed Anal. 2024 Apr 23. pii: S0731-7085(24)00214-0. [Epub ahead of print]245 116174
      We present a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying fenfluramine (FFA), its active metabolite norfenfluramine (norFFA), and Epidyolex®, a pure cannabidiol (CBD) oral solution in plasma. Recently approved by the EMA for the adjunctive treatment of refractory seizures in patients with Dravet and Lennox-Gastaut syndromes aged above 2 years, FFA and CBD still do not have established therapeutic blood ranges, and thus need careful drug monitoring to manage potential pharmacokinetic and pharmacodynamic interactions. Our method, validated by ICH guidelines M10, utilizes a rapid extraction protocol from 100 µL of human plasma and a reversed-phase C-18 HPLC column, with deuterated internal standards. The Thermofisher Quantiva triple-quadrupole MS coupled with an Ultimate 3000 UHPLC allowed multiple reaction monitoring detection, ensuring precise analyte quantification. The assay exhibited linear responses across a broad spectrum of concentrations: ranging from 1.64 to 1000 ng/mL for both FFA and CBD, and from 0.82 to 500 ng/mL for norFFA. The method proves accurate and reproducible, free from matrix effect. Additionally, FFA stability in plasma at 4 °C and -20 °C for up to 7 days bolsters its clinical applicability. Plasma concentrations detected in patients samples, expressed as mean ± standard deviation, were 0.36 ± 0.09 ng/mL for FFA, 19.67 ± 1.22 ng/mL for norFFA. This method stands as a robust tool for therapeutic drug monitoring (TDM) of FFA and CBD, offering significant utility in assessing drug-drug interactions in co-treated patients, thus contributing to optimized patient care in complex therapeutic scenarios.
    Keywords:  Cannabidiol; Children; Epilepsy; Fenfluramine; Liquid chromatography couple to tandem mass spectrometry; Norfenfluramine; Therapeutic drug monitoring
    DOI:  https://doi.org/10.1016/j.jpba.2024.116174
  9. J Am Soc Mass Spectrom. 2024 May 06.
      Testing for vitamin D deficiency remains a high-volume clinical assay, much of which is done using mass spectrometry-based methods to alleviate challenges in selectivity associated with immunoassays. Ion mobility-mass spectrometry (IM-MS) has been proposed as a rapid alternative to traditional LC-MS/MS methods, but understanding the structural ensemble that contributes to the ion mobility behavior of this molecular class is critical. Herein we demonstrate the first application of high-resolution Structures for Lossless Ion Manipulations (SLIM) IM separations of several groups of isomeric vitamin D metabolites. Despite previous IM studies of these molecules, the high resolving power of SLIM (Rp ∼ 200) has revealed additional conformations for several of the compounds. The highly similar collision cross sections (CCS), some differing by as little as 0.7%, precluded adequate characterization with low-resolution IM techniques where, in some cases, wider than expected peak widths and/or subtle shoulders may have hinted at their presence. Importantly, these newly resolved peaks often provided a unique mobility that could be used to separate isomers and provides potential for their use in quantification. Lastly, the contribution of isotopic labeling to arrival time distribution for commonly used 13C- and deuterium-labeled internal standards was explored. Minor shifts of ∼0.2-0.3% were observed, and in some instances these shifts were specific to the conformer being measured (i.e., "closed" vs "open"). Accounting for these shifts is important during raw data extraction to ensure reproducible peak area integration, which will be a critical consideration in future quantitative applications.
    Keywords:  ion mobility-mass spectrometry; structures for lossless ion manipulations (SLIM); vitamin D
    DOI:  https://doi.org/10.1021/jasms.4c00116
  10. Anal Sci Adv. 2022 Jun;3(5-6): 198-204
      Tolinapant (ASTX660), a pan-selective inhibitor of apoptosis protein antagonist with dual cIAP/XIAP activity, was identified as a clinical candidate in preclinical efficacy, pharmacokinetic and safety studies. In order to assess tolinapant in first-in-human Phase I/II clinical trials, a validated bioanalytical method was required to determine plasma pharmacokinetics. Tolinapant and d4-tolinapant were extracted from human plasma using liquid-liquid extraction. Separation chromatography was performed on a Acquity BEH C18 1.7 µM, 50 mm × 2.1 mm i.d. column, using a mobile phase of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Mass spectrometry detection was performed by positive turbo ion spray ionisation, in multiple reaction monitoring mode. The method was validated according to the US Food and Drug Administration (FDA) guidelines. The method has a quantifiable linear range of 1-500 ng/mL (r 2 = 0.999). The intra- and inter-day coefficients of variation were < 11.4%. Dilution QC samples agreed with prepared concentrations, with a precision of 1.5% and accuracy of 101%. Tolinapant mean recoveries ranged from 85.1-94.4 % with negligible matrix effects. A highly sensitive and selective LC-MS/MS bioanalytical method was developed and validated. The method was successfully applied in Phase 1/2 clinical trials to determine the human pharmacokinetic profile of tolinapant.
    DOI:  https://doi.org/10.1002/ansa.202200009
  11. Anal Chim Acta. 2024 Jun 08. pii: S0003-2670(24)00375-1. [Epub ahead of print]1307 342574
      BACKGROUND: Metabolomics is nowadays considered one the most powerful analytical for the discovery of metabolic dysregulations associated with the insurgence of cancer, given the reprogramming of the cell metabolism to meet the bioenergetic and biosynthetic demands of the malignant cell. Notwithstanding, several challenges still exist regarding quality control, method standardization, data processing, and compound identification. Therefore, there is a need for effective and straightforward approaches for the untargeted analysis of structurally related classes of compounds, such as acylcarnitines, that have been widely investigated in prostate cancer research for their role in energy metabolism and transport and β-oxidation of fatty acids.RESULTS: In the present study, an innovative analytical platform was developed for the straightforward albeit comprehensive characterization of acylcarnitines based on high-resolution mass spectrometry, Kendrick mass defect filtering, and confirmation by prediction of their retention time in reversed-phase chromatography. In particular, a customized data processing workflow was set up on Compound Discoverer software to enable the Kendrick mass defect filtering, which allowed filtering out more than 90 % of the initial features resulting from the processing of 25 tumoral and adjacent non-malignant prostate tissues collected from patients undergoing radical prostatectomy. Later, a partial least square-discriminant analysis model validated by repeated double cross-validation was built on the dataset of 74 annotated acylcarnitines, with classification rates higher than 93 % for both groups, and univariate statistical analysis helped elucidate the individual role of the annotated metabolites.
    SIGNIFICANCE: Hydroxylation of short- and medium-chain minor acylcarnitines appeared to be a significant variable in describing tissue differences, suggesting the hypothesis that the neoplastic growth is linked to oxidation phenomena on selected metabolites and reinforcing the need for effective methods for the annotation of minor metabolites.
    Keywords:  Metabolomics; PLS-DA; Prostatic neoplasm; Repeated double cross validation; Retention time prediction; β-oxidation
    DOI:  https://doi.org/10.1016/j.aca.2024.342574
  12. J Mass Spectrom Adv Clin Lab. 2024 Apr;32 60-67
      Introduction: Chromatographic methods for analysis of propofol and its metabolites have been widely used in pharmacokinetic studies of propofol distribution, metabolism, and clearance. Application of chromatographic methods is also needed in clinical and forensic laboratories for detecting and monitoring propofol misuse.Objective: We report a method for sensitive analysis of propofol, propofol 1-glucuronide (PG), 4-hydroxypropofol 1-glucuronide (1-QG), 4-hydroxypropofol 4-glucuronide (4-QG) and 4-hydroxypropofol 4-sulfate (4-QS) in urine by LC-MS/MS analysis. The method employs a simple dilute-and-analyze sample preparation with stable isotope internal standardization.
    Results: Validation studies demonstrate a linear calibration model (100-10,000 ng/mL), with dilution integrity verified for the extended range of concentrations experienced in propofol use. Criteria-based validation was achieved, including an average coefficient of variation of 6.5 % and a percent bias of -4.2 ng/mL. The method was evaluated in 12 surgical patients, with monitoring periods lasting up to 30 days following intravenous propofol administrations of 100-3000 mg on the day of surgery. While the concentration ratio of PG to 4-hydroxy propofol metabolite decreased significantly in the days following surgery, PG maintained the highest concentration in all specimens. Both PG and 1-QG were detectable throughout the monitoring periods, including in a patient monitored for 30 days. Lower concentrations were determined for 4-QG and 4-QS, with evidence of detection up to 20 days. Propofol was not detectable in any urine specimens, thereby proving ineffective for identifying drug use.
    Conclusion: The validated method for quantifying propofol metabolites demonstrates its applicability for the sensitive detection of propofol misuse over a long window of drug-use detection.
    Keywords:  Liquid chromatography–tandem mass spectrometry; Propofol; Propofol metabolites; Urine drug monitoring
    DOI:  https://doi.org/10.1016/j.jmsacl.2024.04.001
  13. Anal Chem. 2024 May 05.
      Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a powerful imaging method for generating molecular maps of biological samples and has numerous applications in biomedical research. A key challenge in MALDI MSI is to reliably map observed mass peaks to theoretical masses, which can be difficult due to mass shifts that occur during the measurement process. In this paper, we propose MassShiftNet, a novel self-supervised learning framework for mass recalibration. We train a neural network on a data dependent and specifically augmented training data set to directly estimate and correct the mass shift in the observed spectra. In our evaluation, we show that this method is both able to reduce the absolute mass error and to increase the relative mass alignment between peptide MSI spectra acquired from FFPE-fixated tissue using a MALDI time-of-flight (TOF) instrument.
    DOI:  https://doi.org/10.1021/acs.analchem.4c00304
  14. J Am Soc Mass Spectrom. 2024 May 08.
      N-nitrosamines (NAs) are prevalent mutagenic impurities in various consumer products. Their discovery in valsartan-containing medicines in 2018 prompted global regulatory agencies to set guidelines on their presence and permissible levels in pharmaceuticals. In order to determine the NAs content in medicines, efficient and sensitive analytical methods have been developed based on mass spectrometry techniques. Direct analysis in real time-mass spectrometry (DART-MS) has emerged as a prominent ambient ionization technique for pharmaceutical analysis due to its high-throughput capability, simplicity, and minimal sample preparation requirements. Thus, in this study DART-MS was evaluated for the screening and quantification of NAs in medicines. DART-MS analyses were conducted in positive ion mode, for both direct tablet analysis and solution analysis. The analytical performance was evaluated regarding linearity, precision, accuracy, limits of detection, and quantification. The DART-MS proved to be suitable for the determination of NAs in medicines, whether through direct tablet analysis or solution analysis. The analytical performance demonstrated linearity in the range from 1.00 to 200.00 ng mL-1, limits of quantification about 1.00 ng mL-1, precision and accuracy lower than 15%, and no significant matrix effect for six drug-related NAs. In conclusion, the DART-MS technique demonstrated to be an alternative method to determine NAs in medicines, aligning with the principles of green chemistry.
    Keywords:  N-nitrosodiethylamine; N-nitrosodimethylamine; Sartan medicines; ambient ionization mass spectrometry; direct analysis; nimesulide
    DOI:  https://doi.org/10.1021/jasms.4c00012
  15. Anal Sci Adv. 2023 Aug;4(7-8): 244-254
      Measurement of hormones is important for the diagnosis and management of endocrine diseases. The thyroid hormones thyroxine (T4) and triiodothyronine (T3) are among the most commonly measured hormones in clinical laboratories, and it is the concentration of free (not bound to proteins) thyroid hormones that is clinically most relevant. Free thyroid hormones are commonly measured using automated immunoassays, however, these are known to produce erroneous results due to interferences for some patients. Measurement of free thyroid hormones using equilibrium dialysis or ultrafiltration combined with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is considered a more accurate and robust method for free thyroid hormone analysis and overcomes many of the limitations of immunoassays. However, LC-MS/MS-based methods are often considered too technically difficult and not amendable to high throughput by clinical chemists and are not offered by many clinical laboratories. This mini-review aims to make it easier for clinical laboratories to implement LC-MS/MS-based measurement of free thyroid hormones. It describes the medical rationale for measuring free thyroid hormones, the benefits of LC-MS/MS-based methods with respect to interferences affecting immunoassay-based methods and physical separation methods. This mini-review highlights important parameters for ultrafiltration and equilibrium dialysis to obtain physiologically relevant free thyroid hormone concentrations and focuses on methods and devices used in clinical chemistry.
    DOI:  https://doi.org/10.1002/ansa.202200067
  16. Metabolomics. 2024 May 09. 20(3): 53
      INTRODUCTION: Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects.OBJECTIVES: To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations.
    METHODS: A dual extraction method involving 80% methanol followed by MTBE (methyl tert-butyl ether) extraction enables the analysis of free fatty acids, polar metabolites, and lipids. Extracts from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days were analyzed using HILIC chromatography coupled to Q Exactive Plus mass spectrometer or reversed-phase liquid chromatography coupled to MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility.
    RESULTS: Lipidomics analysis of 6 mouse tissues and plasma allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that (1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; (2) the impact on lysophosphatidylcholine (lysoPC) and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations; (3) increase of intestinal tricarboxylic acid (TCA) cycle intermediates after metformin treatment.
    CONCLUSION: The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).
    Keywords:  DIA; Intestinal metabolism; Lipidomics; Metformin
    DOI:  https://doi.org/10.1007/s11306-024-02113-2
  17. J Mass Spectrom. 2024 Jun;59(6): e5036
      Turmeric and ginger are extensively employed as functional ingredients due to their high content of curcuminoids and gingerols, considered the key bioactive compounds found in these roots. In this study, we present an innovative and fast method for the assay of curcuminoids and gingerols in different foods containing the two spices, with the aim of monitoring the quality of products from a nutraceutical perspective. The proposed approach is based on paper spray tandem mass spectrometry coupled with the use of a labeled internal standard, which has permitted to achieve the best results in terms of specificity and accuracy. All the calculated analytical parameters were satisfactory; accuracy values are around 100% for all spiked samples and the precision data result lower than 15%. The protocol was applied to several real samples, and to demonstrate its robustness and reliability, the results were compared to those arising from the common liquid chromatographic method.
    Keywords:  bioactive compounds; curcuminoids; gingerols; paper spray ionization; tandem mass spectrometry
    DOI:  https://doi.org/10.1002/jms.5036
  18. Anal Methods. 2024 May 08.
      We have successfully developed a validated high-throughput analysis method for the identification and quantification of native and oxifunctionalized monolignols using direct infusion electrospray ionization tandem mass spectrometry (DI-ESI-MS/MS). Oxifunctionalized monolignols generated through unspecific peroxygenase catalysis present a sustainable alternative to fossil aromatic hydrocarbons. This study emphasizes a sustainable analytical approach for these renewable biocatalytic precursors, addressing challenges such as matrix effects, accuracy, precision, and sensitivity of the method. Our findings demonstrate the potential of overcoming quantification difficulties using DI-ESI-MS. Notably, this analytical methodology represents a novel utilization of DI-ESI-MS/MS in examining monolignols and their functionalization, thereby advancing the exploration of lignin as a valuable and sustainable bioresource.
    DOI:  https://doi.org/10.1039/d4ay00403e
  19. Ann Pharm Fr. 2024 May 08. pii: S0003-4509(24)00069-5. [Epub ahead of print]
      OBJECTIVES: Voriconazole is a widely used antifungal agent in clinical settings. However, its use has been associated with neurological side effects in some patients. For this reason, it is crucial to monitor its plasma levels to ensure that they are within the therapeutic range. Thus, in this study, we aimed to develop a simple, fast, and efficient method for the determination of voriconazole in plasma using reversed-phase HPLC-UV. We also aimed to validate the method for its application to routine analysis of immunocompromised patients.MATERIAL AND METHODS: Plasma samples from immunocompromised patients were subjected to deproteinization with acetonitrile followed by centrifugation. Chromatographic separation was carried out on a C18 column with UV detection at 254 nm in isocratic mode. The concentrations were calculated by comparing peak areas to those of the internal standard, ketoconazole. The method was validated using the accuracy profile, which uses a calibration curve established for the therapeutic range of 1 to 5.5 µg/mL.
    RESULTS: The developed method was proved to be rapid by giving a short analysis time for voriconazole at around 5.5 min. Additionally, no interference with the biological matrix was detected. The obtained recoveries were higher than 90%. The accuracy profile showed that the method was accurate and precise for the determination of voriconazole in plasma.
    CONCLUSION: The developed method was proved to be simple, efficient, that requires minimal sample preparation. Thus it can be routinely applied for the therapeutic monitoring of voriconazole.
    Keywords:  CLHP-UV; HPLC-UV; Voriconazole; accuracy profile; optimisation; optimization; plasma; profile d’exactitude
    DOI:  https://doi.org/10.1016/j.pharma.2024.05.002
  20. J Am Soc Mass Spectrom. 2024 May 05.
      Nontargeted analysis (NTA) is a rapidly growing field of techniques that includes the identification of unknown chemical analytes in complex mixtures such as environmental, biological, and food matrices. The use of reference mass spectral databases is a key component of most NTA workflows, providing a high level of confidence for chemical identification when analytical standards are not available, yet effective interlaboratory sharing of research grade spectra remains challenging. The Database Infrastructure for Mass Spectrometry (DIMSpec) project focused on the creation of an open-source toolkit supporting storage and sharing of high-resolution mass spectra with attached sample and methodological metadata. As a demonstration of its utility, the DIMSpec toolkit was used to create a database of curated mass spectra for per- and polyfluoroalkyl substances (PFAS) generated from various sources. While the underlying toolkit is agnostic to analytical targets, this initial release (along with the database schema, mass spectral data, and database tools) should enable PFAS researchers to use these data for their own studies, including the identification of novel PFAS in the environment.
    DOI:  https://doi.org/10.1021/jasms.4c00073
  21. Anal Methods. 2024 May 08.
      Traditional sample preparation techniques based on liquid-liquid extraction (LLE) or solid-phase extraction (SPE) often suffer from a major error due to the matrix effects caused by significant co-extraction of matrix components. The implementation of a modern extraction technique such as solid-phase microextraction (SPME) was aimed at reducing analysis time and the use of organic solvents, as well as eliminating pre-analytical and analytical errors. Solid-phase microextraction (SPME) is an innovative technique for extracting low molecular weight compounds (less than 1500 Da) from highly complex matrices, including biological matrices. It has a wide range of applications in various types of analysis including pharmaceutical, clinical, metabolomics and proteomics. SPME has a number of advantages over other extraction techniques. Among the most important are low environmental impact, the ability to sample and preconcentrate analytes in one step, simple automation, and the ability to extract multiple analytes simultaneously. It is expected to become, in the future, another method for cell cycle research. Numerous available literature sources prove that solid-phase microextraction can be a future technique in many scientific fields, including pharmaceutical sciences. This paper provides a literature review of trends in SPME coatings and pharmacological applications.
    DOI:  https://doi.org/10.1039/d4ay00187g
  22. J Steroid Biochem Mol Biol. 2024 May 04. pii: S0960-0760(24)00075-X. [Epub ahead of print] 106527
      Methyltestosterone (MT) is one of the most frequently misused anabolic androgenic steroids detected in doping control analysis. The metabolism of MT in humans leads to several phase І metabolites and their corresponding phase Ⅱ conjugates. Previous studies have postulated the 3α-sulfoconjugate of 17α-methyl-5β-androstane-3α,17β-diol (S2) as principal sulfate metabolite of MT, with a detection window exceeding 10 days. However, a final direct and unambiguous confirmation of the structure of this metabolite is missing until now. In this study, we established an approach to detect and identify S2, using intact analysis by liquid chromatography hyphenated with tandem mass spectrometry (LC-MS/MS) without complex sample pretreatment. An in vitro study yielded the LC-MS/MS reference retention times of all 3-sulfated 17-methylandrostane-3,17-diol diastereomers, allowing for accurate structure assignment of potentially detected metabolites. In an in vivo excretion study with a single healthy male volunteer, the presence of the metabolite S2 was confirmed after a single oral dose of 10mg MT. The reference standard was chemically synthesized, characterized by accurate mass mass spectrometry (MS) and nuclear magnetic resonance (NMR), and quantified by quantitative qNMR. Thus, this study finally provides accurate structure information on the S2 metabolite and a direct analytical method for detection of MT misuse. The availability of the reference material is expected to be of benefit for further evaluation and subsequent analytical method validation in anti-doping research.
    Keywords:  Methyltestosterone; doping control; fission yeast; sulfotransferase metabolism; tetrahydromethyltestosterone sulfate
    DOI:  https://doi.org/10.1016/j.jsbmb.2024.106527