J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Jun 13. pii: S1570-0232(20)30185-9. [Epub ahead of print]1152 122243
The C11-oxy androgens have been implicated in the progression of many diseases and endocrine-linked disorders, such as polycystic ovarian syndrome (PCOS), congenital adrenal hyperplasia, specifically 21-hydroxylase deficiency (21OHD), castration resistant prostate cancer (CRPC), as well as premature adrenarche. While the C11-oxy C19 steroids have been firmly established in the steroid arena, the C11-oxy C21 steroids are now also of significance. The current study reports on a high-throughput ultra-performance convergence chromatography tandem mass spectrometry (UPC2-MS/MS) method for the separation and quantification of 52 steroids in peripheral serum, which include the C11-oxy C19 and C11-oxy C21 steroids. Fifteen deuterium-labelled steroids were included for absolute quantification, which incorporates steroid extraction efficiency, together with one steroid and four non-steroidal compounds serving as quality controls (QC). The 15 min run-time per sample (16 min injection-to-injection time with an 8-step gradient) quantifies 68 analytes in a 2 µL injection volume. A single chromatographic step simultaneously identifies steroids in the mineralocorticoid, glucocorticoid and androgen pathways in adrenal steroidogenesis, together with steroid metabolites produced in the periphery, presenting an analytical method for the application of screening in vivo clinical samples. This study highlights cross-talk between the C11-oxy steroids, and describes the optimisation of multiple reaction monitoring required to measure steroids accurately. The limit of detection for the steroid metabolites ranged from 0.002 to 20 ng/mL and the limit of quantification from 0.02 to 100 ng/mL. The calibration range for the steroids ranged from 0.002 to 1000 ng/mL and for the QC compounds from 0.075 to 750 ng/mL. The method is fully validated in terms of accuracy (%RSD, <13%), precision (including inter-day variability across a three-day period) (%RSD, <16%), recovery (average 102.42%), matrix effect (ranging from -15.25 to 14.25%) and process efficiency (average 101.79%). The dilution protocol for the steroids, internal standards and QC compounds were validated, while the ion ratios of the steroid metabolites (%RSD, <16%) and QC compounds were monitored and the accuracy bias values (%RSD, <9%) were within acceptable limits. The method was subsequently used to quantify steroid levels in a cohort of healthy women. C11-oxy steroid metabolites produced as intermediates in steroidogenic pathways, together with end-products included in the method can potentially characterise the 11β-hydroxyandrostenedione-, C21- and C11-oxy backdoor pathways in vivo. The identification of these C11-oxy C19 and C11-oxy C21 intermediates would allow insight into active pathways, while steroid metabolism could be traced in patients and reference ranges established in both normal and abnormal conditions. Furthermore, conditions currently undefined in terms of the C11-oxy steroids would benefit from the analysis provided by this method, while the C11-oxy steroids could be further explored in PCOS, 21OHD, CRPC and adrenarche.
Keywords: 11keto-testosterone (11KT); 11β-hydroxyandrostenedione (11OHA4); Castration resistant prostate cancer (CRPC); Congenital adrenal hyperplasia (CAH); Oxygenated; Polycystic ovary syndrome (PCOS)