bims-metalz Biomed News
on Metabolic causes of Alzheimer’s disease
Issue of 2024–06–30
three papers selected by
Mikaila Chetty, Goa University



  1. Nat Prod Res. 2024 Jun 23. 1-28
      Alzheimer's disease (AD) is the most common neurodegenerative disease, which is mainly caused by the damage of the structure and function of the central nervous system. At present, there are many adverse reactions in market-available drugs, which can't significantly inhibit the occurrence of AD. Therefore, the current focus of research is to find safe and effective therapeutic drugs to improve the clinical treatment of AD. Oxidative stress bridges different mechanism hypotheses of AD and plays a key role in AD. Numerous studies have shown that natural flavonoids have good antioxidant effects. They can directly or indirectly resist -oxidative stress, inhibit Aβ aggregation and Tau protein hyperphosphorylation by activating Nrf2 and other oxidation-antioxidation-related signals, regulating synaptic function-related pathways, promoting mitochondrial autophagy, etc., and play a neuroprotective role in AD. In this review, we summarised the mechanism of flavonoids inhibiting oxidative stress injury in AD in recent years. Moreover, because of the shortcomings of poor biofilm permeability and low bioavailability of flavonoids, the advantages and recent research progress of nano-drug delivery systems such as liposomes and solid lipid nanoparticles were highlighted. We hope this review provides a useful way to explore safe and effective AD treatments.
    Keywords:  Alzheimer’s disease; catechin; flavanone; flavonoids; isoflavones; oxidative stress; silymarin
    DOI:  https://doi.org/10.1080/14786419.2024.2345760
  2. Comb Chem High Throughput Screen. 2024 Jun 12.
      In the realm of environmentally conscious materials science, the integration of silver nanoparticles (AgNPs) with biodegradable polymers to form innovative nanocomposites has sparked notable discourse and research. This review delves comprehensively into the synthesis, properties, and environmental implications of said AgNPs/biodegradable polymer nanocomposites. Leveraging the unique physicochemical attributes of silver nanoparticles, these nanocomposites are portrayed as promising platforms for delivery, sensing, and antimicrobial applications. The nanocomposites made of AgNPs with biodegradable polymers, however, extend beyond utility, demonstrating a commitment to minimizing ecological impact. Contrary to traditional non-degradable polymers that litter our environments and oceans, these green alternatives yield lesser waste, reduce energy use, and limit the emission of volatile organic compounds, thereby aligning with global efforts towards sustainability. Our review strives to substantiate the environmental viability of these nanocomposites, whilst elaborating on their diverse commercial potential.
    Keywords:  Nanocomposites; chemical analysis; chemical properties.; nanoparticles; nanostructures; organic compounds
    DOI:  https://doi.org/10.2174/0113862073312524240524064528
  3. Fundam Res. 2023 Jul;3(4): 505-519
      Abnormal aggregation and accumulation of pathological amyloid proteins such as amyloid-β, Tau, and α-synuclein play key pathological roles and serve as histological hallmarks in different neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, various post-translational modifications (PTMs) have been identified on pathological amyloid proteins and are subjected to change during disease progression. Given the central role of amyloid proteins in NDs, tremendous efforts have been made to develop amyloid-targeting strategies for clinical diagnosis and molecular classification of NDs. In this review, we summarize two major strategies for targeting amyloid aggregates, with a focus on the trials in AD diagnosis. The first strategy is a positron emission tomography (PET) scan of protein aggregation in the brain. We mainly focus on introducing the development of small-molecule PET tracers for specifically recognizing pathological amyloid fibrils. The second strategy is the detection of PTM biomarkers on amyloid proteins in cerebrospinal fluid and plasma. We discuss the pathological roles of different PTMs in diseases and how we can use the PTM profile of amyloid proteins for clinical diagnosis. Finally, we point out the potential technical challenges of these two strategies, and outline other potential strategies, as well as a combination of multiple strategies, for molecular diagnosis of NDs.
    Keywords:  Alzheimer's disease; Amyloid aggregation; Biomarker; Clinical diagnosis; Neurodegenerative diseases; Positron emission tomography (PET) tracer; Post-translational modification; Tau
    DOI:  https://doi.org/10.1016/j.fmre.2022.10.009