Biochem Biophys Res Commun. 2024 Aug 29. pii: S0006-291X(24)01157-4. [Epub ahead of print]734 150621
Epigenetic modifications and their alterations can cause variation in gene expression patterns which can ultimately affect a healthy individual. Until a few years ago, it was thought that the epigenome affects the transcriptome which can regulate the proteome and the metabolome. Recent studies have shown that the metabolome independently also plays a major role in regulating the epigenome bypassing the need for transcriptomic control. Alternatively, an imbalanced metabolome, stemming from transcriptome abnormalities, can further impact the transcriptome, creating a self-perpetuating cycle of interconnected occurrences. As a result, external factors such as nutrient intake and diet can have a direct impact on the metabolic pools and its reprogramming can change the levels and activity of epigenetic modifiers. Thus, the epigenetic landscape steers toward a diseased condition. In this review, we have discussed how different metabolites and dietary patterns can bring about changes in different arms of the epigenetic machinery such as methylation, acetylation as well as RNA mediated epigenetic mechanisms. We checked for limiting metabolites such as αKG, acetyl-CoA, ATP, NAD+, and FAD, whose abundance levels can lead to common diseases such as cancer, neurodegeneration etc. This gives a clearer picture of how an integrated approach including both epigenetics and metabolomics can be used for therapeutic purposes.
Keywords: DNA methylation; Epigenetics; Histone modification; RNA; acetyl CoA; metabolism; α-ketoglutarate