bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2023–05–28
seven papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. Carcinogenesis. 2023 May 22. pii: bgad034. [Epub ahead of print]
      Ras-related protein Rab-10 (RAB10) is involved in tumorigenesis and progression of hepatocellular carcinoma (HCC). Here, we found RAB10, O-GlcNAc transferase (OGT), and O-GlcNAcylation were upregulated in HCC. In addition, RAB10 protein level was prominently positively correlated with the expression of OGT. O-GlcNAcylation modification of RAB10 was then investigated. Here we showed that RAB10 interacts directly with OGT in HCC cell lines, Meanwhile, O-GlcNAcylation enhanced RAB10 protein stability. Furthermore, knockdown of OGT suppressed aggressive behaviors of HCC in vitro and in vivo, while elevated RAB10 reversed these. Taken together, these results indicated that OGT-mediated O-GlcNAcylation stabilized RAB10, thus accelerating HCC progression.
    Keywords:  O-GlcNAcylation; OGT; RAB10; hepatocellular carcinoma
    DOI:  https://doi.org/10.1093/carcin/bgad034
  2. Cancer Cell Int. 2023 May 25. 23(1): 102
       BACKGROUND: Enhanced glucose metabolism is a feature of most tumors, but downstream functional effects of aberrant glucose flux are difficult to mechanistically determine. Metabolic diseases including obesity and diabetes have a hyperglycemia component and are correlated with elevated pre-menopausal cancer risk for triple-negative breast cancer (TNBC). However, determining pathways for hyperglycemic disease-coupled cancer risk remains a major unmet need. One aspect of cellular sugar utilization is the addition of the glucose-derived protein modification O-GlcNAc (O-linked N-acetylglucosamine) via the single human enzyme that catalyzes this process, O-GlcNAc transferase (OGT). The data in this report implicate roles of OGT and O-GlcNAc within a pathway leading to cancer stem-like cell (CSC) expansion. CSCs are the minor fraction of tumor cells recognized as a source of tumors as well as fueling metastatic recurrence. The objective of this study was to identify a novel pathway for glucose-driven expansion of CSC as a potential molecular link between hyperglycemic conditions and CSC tumor risk factors.
    METHODS: We used chemical biology tools to track how a metabolite of glucose, GlcNAc, became linked to the transcriptional regulatory protein tet-methylcytosine dioxygenase 1 (TET1) as an O-GlcNAc post-translational modification in three TNBC cell lines. Using biochemical approaches, genetic models, diet-induced obese animals, and chemical biology labeling, we evaluated the impact of hyperglycemia on CSC pathways driven by OGT in TNBC model systems.
    RESULTS: We showed that OGT levels were higher in TNBC cell lines compared to non-tumor breast cells, matching patient data. Our data identified that hyperglycemia drove O-GlcNAcylation of the protein TET1 via OGT-catalyzed activity. Suppression of pathway proteins by inhibition, RNA silencing, and overexpression confirmed a mechanism for glucose-driven CSC expansion via TET1-O-GlcNAc. Furthermore, activation of the pathway led to higher levels of OGT production via feed-forward regulation in hyperglycemic conditions. We showed that diet-induced obesity led to elevated tumor OGT expression and O-GlcNAc levels in mice compared to lean littermates, suggesting relevance of this pathway in an animal model of the hyperglycemic TNBC microenvironment.
    CONCLUSIONS: Taken together, our data revealed a mechanism whereby hyperglycemic conditions activated a CSC pathway in TNBC models. This pathway can be potentially targeted to reduce hyperglycemia-driven breast cancer risk, for instance in metabolic diseases. Because pre-menopausal TNBC risk and mortality are correlated with metabolic diseases, our results could lead to new directions including OGT inhibition for mitigating hyperglycemia as a risk factor for TNBC tumorigenesis and progression.
    Keywords:  Chemical biology; Epigenetics; Glycobiology; Hyperglycemia; Metabolic disease; O-GlcNAc transferase; Obesity; TET1; TNBC; Tumorigenesis
    DOI:  https://doi.org/10.1186/s12935-023-02942-6
  3. bioRxiv. 2023 May 09. pii: 2023.05.08.539908. [Epub ahead of print]
      Crosstalk between metabolism and stress-responsive signaling is essential to maintaining cellular homeostasis. One way this crosstalk is achieved is through the covalent modification of proteins by endogenous, reactive metabolites that regulate the activity of key stress-responsive transcription factors such as NRF2. Several metabolites including methylglyoxal, glyceraldehyde 3-phosphate, fumarate, and itaconate covalently modify sensor cysteines of the NRF2 regulatory protein KEAP1, resulting in stabilization of NRF2 and activation of its cytoprotective transcriptional program. Here, we employed a shRNA-based screen targeting the enzymes of central carbon metabolism to identify additional regulatory nodes bridging metabolic pathways to NRF2 activation. We found that succinic anhydride, increased by genetic depletion of the TCA cycle enzyme succinyl-CoA synthetase or by direct administration, results in N-succinylation of lysine 131 of KEAP1 to activate NRF2 transcriptional signaling. This study identifies KEAP1 as capable of sensing reactive metabolites not only by several cysteine residues but also by a conserved lysine residue, indicating its potential to sense an expanded repertoire of reactive metabolic messengers.
    DOI:  https://doi.org/10.1101/2023.05.08.539908
  4. J Biomed Sci. 2023 May 22. 30(1): 32
       BACKGROUND: Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear.
    METHODS: We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions.
    RESULTS: Our research identified eIF2α, eIF2β, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions.
    CONCLUSIONS: Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.
    Keywords:  Antioxidant defense; Arginine; Eukaryotic initiation factor 2α; Heme oxygenase 1; O-GlcNAcylation; Protein translation
    DOI:  https://doi.org/10.1186/s12929-023-00924-4
  5. J Autoimmun. 2023 May 20. pii: S0896-8411(23)00057-4. [Epub ahead of print]138 103048
      Metabolic reprogramming plays a pivotal role in the differentiation and function of immune cells including dendritic cells (DCs). Regulatory DCs can be generated in regional tissue niches like splenic stroma and act as an important part of stromal control of immune response for the maintenance of immune tolerance. However, the metabolic alterations during splenic stroma-driven regulatory DCs differentiation and the metabolic enzyme involved in regulatory DCs function remain poorly understood. By combining metabolomic, transcriptomic, and functional investigations of mature DCs (maDCs) and diffDCs (regulatory DCs differentiated from activated mature DCs through coculturing with splenic stroma), here we identified succinate-CoA ligase subunit beta Suclg2 as a key metabolic enzyme that reprograms the proinflammatory status of mature DCs into a tolerogenic phenotype via preventing NF-κB signaling activation. diffDCs downregulate succinic acid levels and increase the Suclg2 expression along with their differentiation from mature DCs. Suclg2-interference impaired the tolerogenic function of diffDCs in inducing T cell apoptosis and enhanced activation of NF-κB signaling and expression of inflammatory genes CD40, Ccl5, and Il12b in diffDCs. Furthermore, we identified Lactb as a new positive regulator of NF-κB signaling in diffDCs whose succinylation at the lysine 288 residue was inhibited by Suclg2. Our study reveals that the metabolic enzyme Suclg2 is required to maintain the immunoregulatory function of diffDCs, adding mechanistic insights into the metabolic regulation of DC-based immunity and tolerance.
    Keywords:  Lactb; Metabolic reprogramming; Regulatory dendritic cells; Succinic acid; Succinylation; Suclg2; T cell apoptosis; diffDCs
    DOI:  https://doi.org/10.1016/j.jaut.2023.103048
  6. Stem Cell Res Ther. 2023 May 26. 14(1): 144
       BACKGROUND: Metformin as a first-line clinical anti-diabetic agent prolongs the lifespan of model animals and promotes cell proliferation. However, the molecular mechanisms underlying the proliferative phenotype, especially in epigenetics, have rarely been reported. The aim of this study was to investigate the physiological effects of metformin on female germline stem cells (FGSCs) in vivo and in vitro, uncover β-hydroxybutyrylation epigenetic modification roles of metformin and identify the mechanism of histone H2B Lys5 β-hydroxybutyrylation (H2BK5bhb) in Gata-binding protein 2 (Gata2)-mediated proliferation promotion of FGSCs.
    METHODS: The physiological effects of metformin were evaluated by intraperitoneal injection and histomorphology. The phenotype and mechanism studies were explored by cell counting, cell viability, cell proliferation assay and protein modification omics, transcriptomics, chromatin immunoprecipitation sequencing in FGSCs in vitro.
    RESULTS: We found that metformin treatment increased the number of FGSCs, promoted follicular development in mouse ovaries and enhanced the proliferative activity of FGSCs in vitro. Quantitative omics analysis of protein modifications revealed that H2BK5bhb was increased after metformin treatment of FGSCs. In combination with H2BK5bhb chromatin immunoprecipitation and transcriptome sequencing, we found that Gata2 might be a target gene for metformin to regulate FGSC development. Subsequent experiments showed that Gata2 promoted FGSC proliferation.
    CONCLUSION: Our results provide novel mechanistic understanding of metformin in FGSCs by combining histone epigenetics and phenotypic analyses, which highlight the role of the metformin-H2BK5bhb-Gata2 pathway in cell fate determination and regulation.
    Keywords:  Female germline stem cells; Gata-binding protein 2; Histone β-hydroxybutyrylation; Metformin
    DOI:  https://doi.org/10.1186/s13287-023-03360-1