bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2022–10–23
three papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. Cancer Commun (Lond). 2022 Oct 20.
      Reversible, spatial, and temporal regulation of metabolic reprogramming and epigenetic homeostasis are prominent hallmarks of carcinogenesis. Cancer cells reprogram their metabolism to meet the high bioenergetic and biosynthetic demands for vigorous proliferation. Epigenetic dysregulation is a common feature of human cancers, which contributes to tumorigenesis and maintenance of the malignant phenotypes by regulating gene expression. The epigenome is sensitive to metabolic changes. Metabolism produces various metabolites that are substrates, cofactors, or inhibitors of epigenetic enzymes. Alterations in metabolic pathways and fluctuations in intermediate metabolites convey information regarding the intracellular metabolic status into the nucleus by modulating the activity of epigenetic enzymes and thus remodeling the epigenetic landscape, inducing transcriptional responses to heterogeneous metabolic requirements. Cancer metabolism is regulated by epigenetic machinery at both transcriptional and post-transcriptional levels. Epigenetic modifiers, chromatin remodelers and non-coding RNAs are integral contributors to the regulatory networks involved in cancer metabolism, facilitating malignant transformation. However, the significance of the close connection between metabolism and epigenetics in the context of cancer has not been fully deciphered. Thus, it will be constructive to summarize and update the emerging new evidence supporting this bidirectional crosstalk and deeply assess how the crosstalk between metabolic reprogramming and epigenetic abnormalities could be exploited to optimize treatment paradigms and establish new therapeutic options. In this review, we summarize the central mechanisms by which epigenetics and metabolism reciprocally modulate each other in cancer and elaborate upon and update the major contributions of the interplays between epigenetic aberrations and metabolic rewiring to cancer initiation and development. Finally, we highlight the potential therapeutic opportunities for hematological malignancies and solid tumors by targeting this epigenetic-metabolic circuit. In summary, we endeavored to depict the current understanding of the coordination between these fundamental abnormalities more comprehensively and provide new perspectives for utilizing metabolic and epigenetic targets for cancer treatment.
    Keywords:  RNA epigenetics; cancer; epigenetics; metabolic reprogramming; therapy
    DOI:  https://doi.org/10.1002/cac2.12374
  2. Circ Res. 2022 Oct 21.
       BACKGROUND: Inflammation resolution and cardiac repair initiation after myocardial infarction (MI) require timely activation of reparative signals. Histone lactylation confers macrophage homeostatic gene expression signatures via transcriptional regulation. However, the role of histone lactylation in the repair response post-MI remains unclear. We aimed to investigate whether histone lactylation induces reparative gene expression in monocytes early and remotely post-MI.
    METHODS: Single-cell transcriptome data indicated that reparative genes were activated early and remotely in bone marrow and circulating monocytes before cardiac recruitment. Western blotting and immunofluorescence staining revealed increases in histone lactylation levels, including the previously identified histone H3K18 lactylation in monocyte-macrophages early post-MI. Through joint CUT&Tag and RNA-sequencing analyses, we identified Lrg1, Vegf-a, and IL-10 as histone H3K18 lactylation target genes. The increased modification and expression levels of these target genes post-MI were verified by chromatin immunoprecipitation-qPCR and reverse transcription-qPCR.
    RESULTS: We demonstrated that histone lactylation regulates the anti-inflammatory and pro-angiogenic dual activities of monocyte-macrophages by facilitating reparative gene transcription and confirmed that histone lactylation favors a reparative environment and improves cardiac function post-MI. Furthermore, we explored the potential positive role of monocyte histone lactylation in reperfused MI. Mechanistically, we provided new evidence that monocytes undergo metabolic reprogramming in the early stage of MI and demonstrated that dysregulated glycolysis and MCT1 (monocarboxylate transporter 1)-mediated lactate transport promote histone lactylation. Finally, we revealed the catalytic effect of IL (interleukin)-1β-dependent GCN5 (general control non-depressible 5) recruitment on histone H3K18 lactylation and elucidated its potential role as an upstream regulatory element in the regulation of monocyte histone lactylation and downstream reparative gene expression post-MI.
    CONCLUSIONS: Histone lactylation promotes early remote activation of the reparative transcriptional response in monocytes, which is essential for the establishment of immune homeostasis and timely activation of the cardiac repair process post-MI.
    Keywords:  histone lactylation; metabolic reprogramming; monocyte; myocardial infarction; reparative genes
    DOI:  https://doi.org/10.1161/CIRCRESAHA.122.320488
  3. Front Oncol. 2022 ;12 1001807
      As a new type of post-translational modification (PTM), lysine 2-hydroxyisobutyrylation (Khib) was firstly identified in histones and functioned as a regulator of transactivation in mammals. However, the role of Khib proteins remains to be investigated. Here, we firstly identified 10,367 Khib sites on 2,325 modified proteins in seven patients with pancreatic cancer by applying liquid chromatography with tandem mass spectrometry (LC-MS/MS) qualitative proteomics techniques. Among them, 27 Khib-modified sites were identified in histones. Bioinformatics analysis revealed that the Khib-modified proteins were mainly distributed in the cytoplasm and enhanced in metabolic pathways, including glycolysis/gluconeogenesis, the tricarboxylic acid cycle (TCA cycle), and fatty acid degradation. In an overlapping comparison of lysine 2-hydroxyisobutyrylation, succinylation, and acetylation in humans, 105 proteins with 80 sites were modified by all three PTMs, suggesting there may be a complex network among the different modified proteins and sites. Furthermore, MG149, which was identified as a Tip60 inhibitor, significantly decreased the total Khib modification level in pancreatic cancer (PC) and strongly suppressed PC's proliferation, migration, and invasion ability. Overall, our study is the first profiling of lysine 2-hydroxyisobutyrylome and provides a new database for better investigating Khib in PC.
    Keywords:  Khib; PTMs; lysine 2-hydroxyisobutyrylation; pancreatic cancer; post-translational modifications; proteomics
    DOI:  https://doi.org/10.3389/fonc.2022.1001807