J Cell Sci. 2022 May 27. pii: jcs.259811. [Epub ahead of print]
Acetyl-CoA participates in post-translational modification of proteins, central carbon and lipid metabolism in several cell compartments. In mammals, the acetyl-CoA transporter 1 (AT1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with dedicated acetyltransferases including NAT8. However, the implication of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. We identify homologues of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei. Proteome-wide analyses revealed widespread N-terminal acetylation marks of secreted proteins in both parasites. Such acetylation profile of N-terminally processed proteins was never observed so far in any other organisms. AT1 deletion resulted in a considerable reduction of parasite fitness. In P. berghei, AT1 is important for growth of asexual blood stages and production of female gametocytes and male gametocytogenesis impaling its requirement for transmission. In the absence of AT1, the lysine and N-terminal acetylation sites remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.
Keywords: Acetyl-CoA transporter; Acetylation; Endoplasmic Reticulum; Plasmodium berghei; Secretory pathway; Toxoplasma gondii