bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2022–02–13
five papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. Cancer Res. 2022 Feb 08. pii: canres.0914.2021. [Epub ahead of print]
      Lactate is an abundant oncometabolite in the tumor environment. In prostate cancer (PCa), cancer-associated fibroblasts are major contributors of secreted lactate, which can be taken up by cancer cells to sustain mitochondrial metabolism. However, how lactate impacts transcriptional regulation in tumors has yet to be fully elucidated. Here, we describe a mechanism by which CAF-secreted lactate is able to increase the expression of genes involved in lipid metabolism in PCa cells.This regulation enhanced intracellular lipid accumulation in lipid droplets (LD) and provided acetyl moieties for histone acetylation, establishing a regulatory loop between metabolites and epigenetic modification. Inhibition of this loop by targeting the bromodomain and extraterminal (BET) protein family of histone acetylation readers suppressed the expression of perilipin-2 (PLIN2), a crucial component of LDs, disrupting lactate-dependent lipid metabolic rewiring. Inhibition of this CAF-induced metabolic-epigenetic regulatory loop in vivo reduced growth and metastasis of prostate cancer cells, demonstrating its translational relevance as a therapeutic target in PCa. Clinically, PLIN2 expression was elevated in tumors with a higher Gleason grade and in castration resistant prostate cancer compared to primary PCa. Overall, these findings show that lactate has both a metabolic and an epigenetic role in promoting PCa progression.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-0914
  2. Front Immunol. 2022 ;13 773261
      Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota with a known role in immune regulation. Acetate, the major SCFA, is described to disseminate to distal organs such as lungs where it can arm sentinel cells, including alveolar macrophages, to fight against bacterial intruders. In the current study, we explored mechanisms through which acetate boosts macrophages to enhance their bactericidal activity. RNA sequencing analyses show that acetate triggers a transcriptomic program in macrophages evoking changes in metabolic process and immune effector outputs, including nitric oxide (NO) production. In addition, acetate enhances the killing activity of macrophages towards Streptococcus pneumoniae in an NO-dependent manner. Mechanistically, acetate improves IL-1β production by bacteria-conditioned macrophages and the latter acts in an autocrine manner to promote NO production. Strikingly, acetate-triggered IL-1β production was neither dependent of its cell surface receptor free-fatty acid receptor 2, nor of the enzymes responsible for its metabolism, namely acetyl-CoA synthetases 1 and 2. We found that IL-1β production by acetate relies on NLRP3 inflammasome and activation of HIF-1α, the latter being triggered by enhanced glycolysis. In conclusion, we unravel a new mechanism through which acetate reinforces the bactericidal activity of alveolar macrophages.
    Keywords:  IL-1β; Streptococcus pneumoniae; alveolar macrophages; immunometabolism; innate immunity; nitric oxide; short chain fatty acid
    DOI:  https://doi.org/10.3389/fimmu.2022.773261
  3. Oxid Med Cell Longev. 2022 ;2022 9171684
      Mitochondrial DNA copy number (mtDNAcn) has been proposed for use as a surrogate biomarker of mitochondrial health, and evidence suggests that mtDNA might be methylated. Intermediates of the one-carbon cycle (1CC), which is duplicated in the cytoplasm and mitochondria, have a major role in modulating the impact of diet on the epigenome. Moreover, epigenetic pathways and the redox system are linked by the metabolism of glutathione (GSH). In a cohort of 101 normal-weight and 97 overweight/obese subjects, we evaluated mtDNAcn and methylation levels in both mitochondrial and nuclear areas to test the association of these marks with body weight, metabolic profile, and availability of 1CC intermediates associated with diet. Body composition was associated with 1CC intermediate availability. Reduced levels of GSH were measured in the overweight/obese group (p = 1.3∗10-5). A high BMI was associated with lower LINE-1 (p = 0.004) and nominally lower methylenetetrahydrofolate reductase (MTHFR) gene methylation (p = 0.047). mtDNAcn was lower in overweight/obese subjects (p = 0.004) and independently correlated with MTHFR methylation levels (p = 0.005) but not to LINE-1 methylation levels (p = 0.086). DNA methylation has been detected in the light strand but not in the heavy strand of the mtDNA. Although mtDNA methylation in the light strand did not differ between overweight/obese and normal-weight subjects, it was nominally correlated with homocysteine levels (p = 0.035) and MTHFR methylation (p = 0.033). This evidence suggests that increased body weight might perturb mitochondrial-nuclear homeostasis affecting the availability of nutrients acting as intermediates of the one-carbon cycle.
    DOI:  https://doi.org/10.1155/2022/9171684
  4. J Am Chem Soc. 2022 Feb 09.
      O-linked N-acetylglucosamine (O-GlcNAc) is a prevalent protein modification that plays fundamental roles in both cell physiology and pathology. O-GlcNAc is catalyzed solely by O-GlcNAc transferase (OGT). The study of protein O-GlcNAc function is limited by the lack of tools to control OGT activity with spatiotemporal resolution in cells. Here, we report light control of OGT activity in cells by replacing a catalytically essential lysine residue with a genetically encoded photocaged lysine. This enables the expression of a transiently inactivated form of OGT, which can be rapidly reactivated by photo-decaging. We demonstrate the activation of OGT activity by monitoring the time-dependent increase of cellular O-GlcNAc and profile glycoproteins using mass-spectrometry-based quantitative proteomics. We further apply this activation strategy to control the morphological contraction of fibroblasts. Furthermore, we achieved spatial activation of OGT activity predominantly in the cytosol. Thus, our approach provides a valuable chemical tool to control cellular O-GlcNAc with much needed spatiotemporal precision, which aids in a better understanding of O-GlcNAc function.
    DOI:  https://doi.org/10.1021/jacs.1c11041
  5. Biol Trace Elem Res. 2022 Feb 07.
      Increasing research is illuminating the intricate roles of metal ions in neural development as well as neurological disorders, which may stem from misregulation or dysfunction of epigenetic modifiers. Lead (Pb), cadmium (Cd), aluminum (Al), and arsenic were chosen for critical review because they have become serious public health concerns due to globalization and industrialization. In this review, we will introduce various modes of action of metals and consider the role of two posttranslational modifications: histone acetylation and methylation and how each of them affects gene expression. We then summarize the findings from previous studies on the neurological outcomes and histone alterations in response to the metals on each of the previously described histone modifications mechanisms. Understanding metal-induced histone modifications changes could provide better insight on the mechanism through which neurotoxicity occurs, to propose and validate these modifications as possible biomarkers for early identification of neurological damage, and can help model targeted therapies for the diseases of the brain.
    Keywords:  Epigenetics; Histone modifications; Metals; Neurological disorders
    DOI:  https://doi.org/10.1007/s12011-022-03134-5