bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2021–09–05
three papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. J Biol Chem. 2021 Aug 30. pii: S0021-9258(21)00950-9. [Epub ahead of print] 101149
      Metabolic flexibility is the capacity of cells to alter fuel metabolism in response to changes in metabolic demand or nutrient availability. It is critical for maintaining cellular bioenergetics and is involved in the pathogenesis of cardiovascular disease and metabolic disorders. However, the regulation and function of metabolic flexibility in lymphatic endothelial cells (LECs) remain unclear. We have previously shown that glycolysis is the predominant metabolic pathway to generate ATP in LECs and that fibroblast growth factor receptor (FGFR) signaling controls lymphatic vessel formation by promoting glycolysis. Here we found that chemical inhibition of FGFR activity or knockdown of FGFR1 induces substantial upregulation of fatty acid β-oxidation (FAO) while reducing glycolysis and cellular ATP generation in LECs. Interestingly, such compensatory elevation was not observed in glucose oxidation and glutamine oxidation. Mechanistic studies show that FGFR blockade promotes the expression of CPT1A, a rate-limiting enzyme of FAO; this is achieved by dampened ERK activation, which in turn upregulates the expression of the peroxisome proliferator activated receptor α (PPARα). Metabolic analysis further demonstrates that CPT1A depletion decreases total cellular ATP levels in FGFR1-deficient rather than wild-type LECs. This result suggests that FAO, which makes a negligible contribution to cellular energy under normal conditions, can partially compensate for energy deficiency caused by FGFR inhibition. Consequently, CPT1A silencing potentiates the effect of FGFR1 knockdown on impeding LEC proliferation and migration. Collectively, our study identified a key role of metabolic flexibility in modulating the effect of FGFR signaling on LEC growth.
    Keywords:  CPT1A; ERK; cell metabolism; cell migration; cell proliferation; fatty acid oxidation; fibroblast growth factor receptor; glycolysis; lymphatic endothelial cell
    DOI:  https://doi.org/10.1016/j.jbc.2021.101149
  2. Epigenetics. 2021 Aug 31. 1-16
      The preconception period represents an important window for foetal and epigenetic programming. Some micronutrients (B vitamins, choline, betaine, methionine) implicated in one-carbon metabolism (OCM) are essential for major epigenetic processes that take place in early pregnancy. However, few studies have evaluated the implication of the micronutrients in placental DNA methylation. We investigated whether intake of OCM nutrients in the year before pregnancy was associated with placental DNA methylation in the EDEN mother-child cohort. Maternal dietary intake was assessed with a food-frequency questionnaire. Three dietary patterns, 'varied and balanced diet,' 'vegetarian tendency,' and 'bread and starchy food,' were used to characterize maternal OCM dietary intake. The Illumina Infinium HumanMethylation450 BeadChip was used to measure placental DNA methylation of 573 women included in the analyses. We evaluated the association of dietary patterns with global DNA methylation. Then, we conducted an agnostic epigenome-wide association study (EWAS) and investigated differentially methylated regions (DMRs) associated with each dietary pattern. We found no significant association between the three dietary patterns and global DNA methylation or individual CpG sites. DMR analyses highlighted associations between the 'varied and balanced' or 'vegetarian tendency' pattern and DMRs located at genes previously implicated in functions essential for embryonic development, such as neurodevelopment. The 'bread and starchy food' pattern was associated with regions related to genes whose functions involve various metabolic and cell synthesis-related processes. In mainly well-nourished French women without major deficiencies, OCM intake before pregnancy was not associated with major variation in DNA methylation.
    Keywords:  Epigenetics; birth cohort; dietary patterns; epigenome-wide association study; global DNA methylation; maternal diet; methyl-donors; placental DNA methylation; pre-conception period
    DOI:  https://doi.org/10.1080/15592294.2021.1957575
  3. Sci Rep. 2021 Sep 02. 11(1): 17589
      During hematopoietic development, definitive hematopoietic cells are derived from hemogenic endothelial (HE) cells through a process known as endothelial to hematopoietic transition (EHT). During EHT, transitioning cells proliferate and undergo progressive changes in gene expression culminating in the new cell identity with corresponding changes in function, phenotype and morphology. However, the metabolic pathways fueling this transition remain unclear. We show here that glutamine is a crucial regulator of EHT and a rate limiting metabolite in the hematopoietic differentiation of HE cells. Intriguingly, different hematopoietic lineages require distinct derivatives of glutamine. While both derivatives, α-ketoglutarate and nucleotides, are required for early erythroid differentiation of HE during glutamine deprivation, lymphoid differentiation relies on α-ketoglutarate alone. Furthermore, treatment of HE cells with α-ketoglutarate in glutamine-free conditions pushes their differentiation towards lymphoid lineages both in vitro and in vivo, following transplantation into NSG mice. Thus, we report an essential role for glutamine metabolism during EHT, regulating both the emergence and the specification of hematopoietic cells through its various derivatives.
    DOI:  https://doi.org/10.1038/s41598-021-97194-7