bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2021‒06‒27
five papers selected by
Alessandro Carrer
Veneto Institute of Molecular Medicine


  1. J Bone Miner Res. 2021 Jun 22.
      ATP citrate lyase (ACLY), generating most of the nucleocytosolic acetyl coenzyme A (acetyl-CoA) for histone acetylation, links cell metabolism to epigenetic regulation. Recent investigations demonstrated that ACLY activated by metabolic reprogramming played an essential role in both M1 and M2 macrophage activation via histone acetylation, previous studies also revealed that histone methylation and acetylation were critical for transcriptional regulation of osteoclast-specific genes. Considering that osteoclast differentiation also undergoes metabolic reprogramming and the activity of ACLY is always Akt-dependent, we inferred that RANK activation might enhance the activity of ACLY through downstream pathways and ACLY might play a role in osteoclast formation. In the current study, we found that ACLY was gradually activated during RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs), both ACLY knock-down and small molecular ACLY inhibitor BMS-303141 significantly decreased nucleocytosolic acetyl-CoA in BMMs and osteoclasts and suppressed osteoclast formation in vitro, BMS-303141 also suppressed osteoclast formation in vivo and prevents OVX-induced bone loss. Further investigations showed that RANKL triggered ACLY translocation into nucleus, consistent with the increasing histone H3 acetylation which was correlated to ACLY. The H3 lysine residues influenced by ACLY were in accordance with GCN5 targets, using GCN5 knock-down and overexpression we showed that ACLY and GCN5 functioned in the same pathway for histone H3 acetylation. Analysis of pathways downstream of RANK activation revealed that ACLY was Akt-dependent and predominately affected Akt pathway. With the help of RNA-sequencing, we discovered Rac1 as a downstream regulator of ACLY, which was involved in shACLY-mediated suppression of osteoclast differentiation, cytoskeleton organization and signal transduction and was transcriptionally regulated by ACLY via histone H3 acetylation. To summarize, our results proved that inhibition of ATP-citrate lyase led to suppression of osteoclast differentiation and function via regulation of histone acetylation, Rac1 could be a downstream regulator of ACLY.
    Keywords:  ACLY; epigenetics; osteoclasts; osteoporosis
    DOI:  https://doi.org/10.1002/jbmr.4399
  2. EMBO Rep. 2021 Jun 23. e52774
      In eukaryotic cells, DNA is tightly packed with the help of histone proteins into chromatin. Chromatin architecture can be modified by various post-translational modifications of histone proteins. For almost 60 years now, studies on histone lysine acetylation have unraveled the contribution of this acylation to an open chromatin state with increased DNA accessibility, permissive for gene expression. Additional complexity emerged from the discovery of other types of histone lysine acylations. The acyl group donors are products of cellular metabolism, and distinct histone acylations can link the metabolic state of a cell with chromatin architecture and contribute to cellular adaptation through changes in gene expression. Currently, various technical challenges limit our full understanding of the actual impact of most histone acylations on chromatin dynamics and of their biological relevance. In this review, we summarize the state of the art and provide an overview of approaches to overcome these challenges. We further discuss the concept of subnuclear metabolic niches that could regulate local CoA availability and thus couple cellular metabolisms with the epigenome.
    Keywords:  acylation; chromatin; histones; metabolism; microdomains
    DOI:  https://doi.org/10.15252/embr.202152774
  3. Front Oncol. 2021 ;11 647559
      Lactate has been observed to fuel TCA cycle and is associated with cancer progression in human lung cancer, the leading cause of cancer deaths worldwide, but the effect of lactate on lung cancer metabolism is rarely reported. In this study, disordered metabolism in non-small cell lung cancer was demonstrated by increased G6PD and SDHA protein levels via immunofluorescence, and up-regulated lactate dehydrogenase was found to be associated with poor prognosis. Then flow cytometry and Seahorse XFe analyzer were utilized to detect the effect of lactate on glycolysis and mitochondrial function in non-small cell lung cancer cells. The results show that in non-small cell lung cancer cells lactate attenuates glucose uptake and glycolysis while maintaining mitochondrial homeostasis as indicated by improved mitochondrial membrane potential. Further exploration found that mRNA levels of glycolytic enzymes (HK-1, PKM) and TCA cycle enzymes (SDHA, IDH3G) are respectively down-regulated and up-regulated by lactate, and increased histone lactylation was observed in promoters of HK-1 and IDH3G via chromatin immunoprecipitation assay. Taken together, the above results indicate that lactate modulates cellular metabolism at least in part through histone lactylation-mediated gene expression in non-small cell lung cancer.
    Keywords:  gene expression; lactate; lactylation; metabolism; non-small cell lung cancer
    DOI:  https://doi.org/10.3389/fonc.2021.647559
  4. Theranostics. 2021 ;11(15): 7527-7545
      Rationale: One of the most common metabolic defects in cancers is the deficiency in arginine synthesis, which has been exploited therapeutically. Yet, challenges remain, and the mechanisms of arginine-starvation induced killing are largely unclear. Here, we sought to demonstrate the underlying mechanisms by which arginine starvation-induced cell death and to develop a dietary arginine-restriction xenograft model to study the in vivo effects. Methods: Multiple castration-resistant prostate cancer cell lines were treated with arginine starvation followed by comprehensive analysis of microarray, RNA-seq and ChIP-seq were to identify the molecular and epigenetic pathways affected by arginine starvation. Metabolomics and Seahorse Flux analyses were used to determine the metabolic profiles. A dietary arginine-restriction xenograft mouse model was developed to assess the effects of arginine starvation on tumor growth and inflammatory responses. Results: We showed that arginine starvation coordinately and epigenetically suppressed gene expressions, including those involved in oxidative phosphorylation and DNA repair, resulting in DNA damage, chromatin-leakage and cGAS-STING activation, accompanied by the upregulation of type I interferon response. We further demonstrated that arginine starvation-caused depletion of α-ketoglutarate and inactivation of histone demethylases are the underlying causes of epigenetic silencing. Significantly, our dietary arginine-restriction model showed that arginine starvation suppressed prostate cancer growth in vivo, with evidence of enhanced interferon responses and recruitment of immune cells. Conclusions: Arginine-starvation induces tumor cell killing by metabolite depletion and epigenetic silencing of metabolic genes, leading to DNA damage and chromatin leakage. The resulting cGAS-STING activation may further enhance these killing effects.
    Keywords:  Arginine starvation; DNA leakage; Epigenetic gene silencing; cGAS-STING activation
    DOI:  https://doi.org/10.7150/thno.54695
  5. J Biol Chem. 2021 Jun 19. pii: S0021-9258(21)00704-3. [Epub ahead of print] 100904
      Mitochondria are critical for regulation of the activation, differentiation, and survival of macrophages and other immune cells. In response to various extracellular signals, such as microbial or viral infection, changes to mitochondrial metabolism and physiology could underlie the corresponding state of macrophage activation. These changes include alterations of oxidative metabolism, mitochondrial membrane potential, and tricarboxylic acid (TCA) cycling, as well as the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) and transformation of the mitochondrial ultrastructure. Here, we provide an updated review of how changes in mitochondrial metabolism and various metabolites such as fumarate, succinate, and itaconate coordinate to guide macrophage activation to distinct cellular states, thus clarifying the vital link between mitochondria metabolism and immunity. We also discuss how in disease settings, mitochondrial dysfunction and oxidative stress contribute to dysregulation of the inflammatory response. Therefore, mitochondria are a vital source of dynamic signals that regulate macrophage biology to fine-tune immune responses.
    Keywords:  macrophage activation; macrophage biology; mitochondrial dysfunction; mitochondrial metabolism; oxidative stress
    DOI:  https://doi.org/10.1016/j.jbc.2021.100904