bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2021–05–30
five papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. FEBS J. 2021 May 25.
      Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress towards understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.
    Keywords:  DNA methylation; acetylation; acylation; cancer; glycolysis; histone; metabolism; methylation; oxidative phosphorylation
    DOI:  https://doi.org/10.1111/febs.16032
  2. Protein Cell. 2021 May 29.
      Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
    Keywords:  cancer therapy; epigenetics; metabolic reprogramming; tumor immunity; tumorigenesis
    DOI:  https://doi.org/10.1007/s13238-021-00846-7
  3. Proc Natl Acad Sci U S A. 2021 Jun 01. pii: e2014681118. [Epub ahead of print]118(22):
      Inducible regulatory T (iTreg) cells play a crucial role in immune suppression and are important for the maintenance of immune homeostasis. Mounting evidence has demonstrated connections between iTreg differentiation and metabolic reprogramming, especially rewiring in fatty acid oxidation (FAO). Previous work showed that butyrate, a specific type of short-chain fatty acid (SCFA) readily produced from fiber-rich diets through microbial fermentation, was critical for the maintenance of intestinal homeostasis and capable of promoting iTreg generation by up-regulating histone acetylation for gene expression as an HDAC inhibitor. Here, we revealed that butyrate could also accelerate FAO to facilitate iTreg differentiation. Moreover, butyrate was converted, by acyl-CoA synthetase short-chain family member 2 (ACSS2), into butyryl-CoA (BCoA), which up-regulated CPT1A activity through antagonizing the association of malonyl-CoA (MCoA), the best known metabolic intermediate inhibiting CPT1A, to promote FAO and thereby iTreg differentiation. Mutation of CPT1A at Arg243, a reported amino acid required for MCoA association, impaired both MCoA and BCoA binding, indicating that Arg243 is probably the responsible site for MCoA and BCoA association. Furthermore, blocking BCoA formation by ACSS2 inhibitor compromised butyrate-mediated iTreg generation and mitigation of mouse colitis. Together, we unveil a previously unappreciated role for butyrate in iTreg differentiation and illustrate butyrate-BCoA-CPT1A axis for the regulation of immune homeostasis.
    Keywords:  CPT1A; butyrate; fatty acid oxidation; iTreg; inflammatory bowel disease
    DOI:  https://doi.org/10.1073/pnas.2014681118
  4. Nat Metab. 2021 May;3(5): 618-635
      Macrophages generate mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species as antimicrobials during Toll-like receptor (TLR)-dependent inflammatory responses. Whether mitochondrial stress caused by these molecules impacts macrophage function is unknown. Here, we demonstrate that both pharmacologically driven and lipopolysaccharide (LPS)-driven mitochondrial stress in macrophages triggers a stress response called mitohormesis. LPS-driven mitohormetic stress adaptations occur as macrophages transition from an LPS-responsive to LPS-tolerant state wherein stimulus-induced pro-inflammatory gene transcription is impaired, suggesting tolerance is a product of mitohormesis. Indeed, like LPS, hydroxyoestrogen-triggered mitohormesis suppresses mitochondrial oxidative metabolism and acetyl-CoA production needed for histone acetylation and pro-inflammatory gene transcription, and is sufficient to enforce an LPS-tolerant state. Thus, mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species are TLR-dependent signalling molecules that trigger mitohormesis as a negative feedback mechanism to restrain inflammation via tolerance. Moreover, bypassing TLR signalling and pharmacologically triggering mitohormesis represents a new anti-inflammatory strategy that co-opts this stress response to impair epigenetic support of pro-inflammatory gene transcription by mitochondria.
    DOI:  https://doi.org/10.1038/s42255-021-00392-w
  5. Cell Metab. 2021 May 21. pii: S1550-4131(21)00220-5. [Epub ahead of print]
      Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
    Keywords:  Lafora disease; MALDI imaging; N-linked glycosylation; antibody-enzyme therapy; brain metabolism; childhood dementia; glucosamine; glycogen metabolism; glycogen storage disease; polyglucosan body
    DOI:  https://doi.org/10.1016/j.cmet.2021.05.003