bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2021‒04‒04
two papers selected by
Alessandro Carrer
Veneto Institute of Molecular Medicine

  1. Nat Cell Biol. 2021 Apr 01.
      Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.
  2. J Nutr Biochem. 2021 Mar 28. pii: S0955-2863(21)00051-6. [Epub ahead of print] 108631
      The mechanisms linking the function of microbes to host health are becoming better defined but are not yet fully understood. One recently explored mechanism involves microbe-mediated alterations in the host epigenome. Consumption of specific dietary components such as fiber, glucosinolates, polyphenols, and dietary fat has a significant impact on gut microbiota composition and function. Microbial metabolism of these dietary components regulates important epigenetic functions that ultimately influences host health. Diet-mediated alterations in the gut microbiome regulate the substrates available for epigenetic modifications like DNA methylation or histone methylation and/or acetylation. In addition, generation of microbial metabolites such as butyrate inhibits the activity of core epigenetic enzymes like histone deacetylases (HDACs). Reciprocally, the host epigenome also influences gut microbial composition. Thus, complex interactions exist between these three factors. This review comprehensively examines the interplay between diet, gut microbes, and host epigenetics in modulating host health. Specifically, the dietary impact on gut microbiota structure and function that in-turn regulates host epigenetics is evaluated in terms of promoting protection from disease development.
    Keywords:  Butyrate; Diet; Epigenetics; Gut Microbiota; HDACs; Metabolism