bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2020–11–01
eight papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. Aging Cell. 2020 Oct 26. e13266
      Calorie restriction (CR), an age delaying diet, affects fat oxidation through poorly understood mechanisms. We investigated the effect of CR on fat metabolism gene expression and intermediate metabolites of fatty acid oxidation in the liver. We found that CR changed the liver acylcarnitine profile: acetylcarnitine, short-chain acylcarnitines, and long-chain 3-hydroxy-acylcarnitines increased, and several long-chain acylcarnitines decreased. Acetyl-CoA and short-chain acyl-CoAs were also increased in CR. CR did not affect the expression of CPT1 and upregulated the expression of long-chain and very-long-chain Acyl-CoA dehydrogenases (LCAD and VLCAD, respectively). The expression of downstream enzymes such as mitochondrial trifunctional protein and enzymes in medium- and short-chain acyl-CoAs oxidation was not affected in CR. CR shifted the balance of fatty acid oxidation enzymes and fatty acid metabolites in the liver. Acetyl-CoA generated through beta-oxidation can be used for ketogenesis or energy production. In agreement, blood ketone bodies increased under CR in a time of the day-dependent manner. Carnitine acetyltransferase (CrAT) is a bidirectional enzyme that interconverts short-chain acyl-CoAs and their corresponding acylcarnitines. CrAT expression was induced in CR liver supporting the increased acetylcarnitine and short-chain acylcarnitine production. Acetylcarnitine can freely travel between cellular sub-compartments. Supporting this CR increased protein acetylation in the mitochondria, cytoplasm, and nucleus. We hypothesize that changes in acyl-CoA and acylcarnitine levels help to control energy metabolism and contribute to metabolic flexibility under CR.
    DOI:  https://doi.org/10.1111/acel.13266
  2. Cancers (Basel). 2020 Oct 28. pii: E3168. [Epub ahead of print]12(11):
      While it is now accepted that nutrition can influence the epigenetic modifications occurring in colorectal cancer (CRC), the underlying mechanisms are not fully understood. Among the tumor suppressor genes frequently epigenetically downregulated in CRC, the four related genes of the UNC5 family: UNC5A, UNC5B, UNC5C and UNC5D encode dependence receptors that regulate the apoptosis/survival balance. Herein, in a mouse model of CRC, we found that the expression of UNC5A, UNC5B and UNC5C was diminished in tumors but only in mice subjected to a High Carbohydrate Diet (HCD) thus linking nutrition to their repression in CRC. O-GlcNAcylation is a nutritional sensor which has enhanced levels in CRC and regulates many cellular processes amongst epigenetics. We then investigated the putative involvement of O-GlcNAcylation in the epigenetic downregulation of the UNC5 family members. By a combination of pharmacological inhibition and RNA interference approaches coupled to RT-qPCR (Reverse Transcription-quantitative Polymerase Chain Reaction) analyses, promoter luciferase assay and CUT&RUN (Cleavage Under Target & Release Using Nuclease) experiments, we demonstrated that the O-GlcNAcylated form of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2) represses the transcription of UNC5A in human colon cancer cells. Collectively, our data support the hypothesis that O-GlcNAcylation could represent one link between nutrition and epigenetic downregulation of key tumor suppressor genes governing colon carcinogenesis including UNC5A.
    Keywords:  EZH2; O-GlcNAcylation; OGT; UNC5A; colon cancer; epigenetics; nutrition
    DOI:  https://doi.org/10.3390/cancers12113168
  3. Diabetologia. 2020 Oct 27.
       AIMS/HYPOTHESIS: Microvascular endothelial hyperpermeability, mainly caused by claudin-5 deficiency, is the initial pathological change that occurs in diabetes-associated cardiovascular disease. The ketone body β-hydroxybutyrate (BHB) exerts unique beneficial effects on the cardiovascular system, but the involvement of BHB in promoting the generation of claudin-5 to attenuate cardiac microvascular hyperpermeability in diabetes is poorly understood.
    METHODS: The effects of BHB on cardiac microvascular endothelial hyperpermeability and claudin-5 generation were evaluated in rats with streptozotocin-induced diabetes and in high glucose (HG)-stimulated human cardiac microvascular endothelial cells (HCMECs). To explore the underlying mechanisms, we also measured β-catenin nuclear translocation, binding of β-catenin, histone deacetylase (HDAC)1, HDAC3 and p300 to the Claudin-5 (also known as CLDN5) promoter, interaction between HDAC3 and β-catenin, and histone acetylation in the Claudin-5 promoter.
    RESULTS: We found that 10 weeks of BHB treatment promoted claudin-5 generation and antagonised cardiac microvascular endothelial hyperpermeability in rat models of diabetes. Meanwhile, BHB promoted claudin-5 generation and inhibited paracellular permeability in HG-stimulated HCMECs. Specifically, BHB (2 mmol/l) inhibited HG-induced HDAC3 from binding to the Claudin-5 promoter, although nuclear translocation or promoter binding of β-catenin did not change with BHB treatment. In addition, BHB prevented the binding and co-localisation of HDAC3 to β-catenin in HG-stimulated HCMECs. Furthermore, using mass spectrometry, acetylated H3K14 (H3K14ac) in the Claudin-5 promoter following BHB treatment was identified, regardless of whether cells were stimulated by HG or not. Although reduced levels of acetylated H3K9 in the Claudin-5 promoter were found following HG stimulation, increased H3K14ac was specifically associated with BHB treatment.
    CONCLUSIONS/INTERPRETATION: BHB inhibited HDAC3 and caused acetylation of H3K14 in the Claudin-5 promoter, thereby promoting claudin-5 generation and antagonising diabetes-associated cardiac microvascular hyperpermeability. Graphical abstract.
    Keywords:  Claudin-5; Diabetes-associated cardiovascular disease; H3K14ac; HDAC3; Microvascular hyperpermeability; β-Hydroxybutyrate
    DOI:  https://doi.org/10.1007/s00125-020-05305-2
  4. Biol Reprod. 2020 Oct 28. pii: ioaa199. [Epub ahead of print]
      Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, HIF1A. Here we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIF1A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metformin, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, while adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs.
    Keywords:  EDN2; HIF1A; corpus luteum; histone modification; luteinisation; siRNA silencing
    DOI:  https://doi.org/10.1093/biolre/ioaa199
  5. J Appl Toxicol. 2020 Oct 28.
      Environmental epigenetic findings shed new light on the roles of epigenetic regulations in environmental exposure-induced toxicities or disease susceptibilities. Currently, environmental emerging contaminants (ECs) are in focus for further investigation due to the evidence of human exposure in addition to their environmental occurrences. However, the adverse effects of these environmental ECs on health through epigenetic mechanisms are still poorly addressed in many aspects. This review discusses the epigenetic mechanisms (DNA methylation, histone modifications, and microRNA expressions) linking ECs exposure to health outcomes. We emphasized on the recent literature describing how ECs can dysregulate epigenetic mechanisms and lead to downstream health outcomes. These up-to-date research outputs could provide novel insights into the toxicological mechanisms of ECs. However, the field still faces a demand for further studies on the broad spectrum of health effects, synergistic/antagonistic effects, transgenerational epigenetic effects, and epidemiologic and demographic data of ECs.
    Keywords:  DNA methylation; adverse health outcomes; environmental emerging contaminants; epigenetics; histone modifications; miRNA; toxicological mechanism
    DOI:  https://doi.org/10.1002/jat.4092
  6. Cancer Metab. 2020 ;8 23
       Background: Targeting glutamine metabolism in cancer has become an increasingly vibrant area of research. Mutant IDH1 (IDH1 mut ) gliomas are considered good candidates for targeting this pathway because of the contribution of glutamine to their newly acquired function: synthesis of 2-hydroxyglutarate (2HG).
    Methods: We have employed a combination of 13C tracers including glutamine and glucose for investigating the metabolism of patient-derived IDH1 mut glioma cell lines through NMR and LC/MS. Additionally, genetic loss-of-function (in vitro and in vivo) approaches were performed to unravel the adaptability of these cell lines to the inhibition of glutaminase activity.
    Results: We report the adaptability of IDH1 mut cells' metabolism to the inhibition of glutamine/glutamate pathway. The glutaminase inhibitor CB839 generated a decrease in the production of the downstream metabolites of glutamate, including those involved in the TCA cycle and 2HG. However, this effect on metabolism was not extended to viability; rather, our patient-derived IDH1 mut cell lines display a metabolic plasticity that allows them to overcome glutaminase inhibition.
    Conclusions: Major metabolic adaptations involved pathways that can generate glutamate by using alternative substrates from glutamine, such as alanine or aspartate. Indeed, asparagine synthetase was upregulated both in vivo and in vitro revealing a new potential therapeutic target for a combinatory approach with CB839 against IDH1 mut gliomas.
    Keywords:  13C tracing; AGI5198; CB839; Gliomas; Glutaminase; IDH1-mutant
    DOI:  https://doi.org/10.1186/s40170-020-00229-2
  7. Endocr Relat Cancer. 2020 Sep 01. pii: ERC-20-0346.R1. [Epub ahead of print]
      Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors arising from the adrenal medulla or extra-adrenal paraganglia. Around 40% of all cases are caused by a germline mutation in a susceptibility gene, half of which being found in an SDHx gene (SDHA, SDHB, SDHC, SDHD or SDHAF2). They encode the four subunits and assembly factor of succinate dehydrogenase (SDH), a mitochondrial enzyme involved both in the tricarboxylic acid cycle and in the electron transport chain. SDHx mutations lead to the accumulation of succinate, which acts as an oncometabolite by inhibiting iron(II) and alpha-ketoglutarate dependent dioxygenases thereby regulating the cell's hypoxic response and epigenetic processes. Moreover, SDHx mutations induce cell metabolic reprogramming and redox imbalance. Major discoveries in PPGL pathophysiology have been made since the initial discovery of SDHD gene mutations in 2000, improving the understanding of their biology, and patient management. It indeed provides new opportunities for diagnostic tools and innovative therapeutic targets in order to improve the prognosis of patients affected by these rare tumors, in particular in the context of metastatic diseases associated with SDHB mutations. This review first describes an overview of the pathophysiology and then focuses on clinical implications of the epigenetic and metabolic reprogramming of SDH-deficient PPGL.
    DOI:  https://doi.org/10.1530/ERC-20-0346
  8. J Cell Mol Med. 2020 Oct 26.
      Acetate is reported as a regulator of fat mass but also as lipogenic source for cancer cells. Breast cancer is surrounded by adipose tissue and has been associated with obesity. However, whether acetate contributes to cancer cell metabolism as lipogenic substrate and/or by changing fat storage and eventually obesity-induced breast cancer progression remains unknown. Therefore, we studied the contribution of acetate to breast cancer metabolism and progression. In vitro, we found that acetate is not a bioenergetic substrate under normoxia and did not result in a significant change of growth. However, by using lipidomic approaches, we discovered that acetate changes the lipid profiles of the cells under hypoxia. Moreover, while mice fed a high-fat diet (HFD) developed bigger tumours than their lean counterparts, exogenous acetate supplementation leads to a complete abolishment of fat mass gain without reverting the HFD-induced obesity-driven tumour progression. In conclusion, although acetate protects against diet-induced obesity, our data suggest that it is not affecting HFD-driven tumour progression.
    Keywords:  acetate; high-fat diet; hypoxia; metabolism; obesity; tumour growth
    DOI:  https://doi.org/10.1111/jcmm.16034