bims-mepmim Biomed News
on Metabolites in pathological microenvironments and immunometabolism
Issue of 2024–02–11
27 papers selected by
Erika Mariana Palmieri, NIH/NCI Laboratory of Cancer ImmunoMetabolism



  1. Nat Commun. 2024 Feb 05. 15(1): 975
      While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.
    DOI:  https://doi.org/10.1038/s41467-024-44868-1
  2. Nature. 2024 Feb 07.
      Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.
    DOI:  https://doi.org/10.1038/s41586-023-06950-4
  3. Cell Death Dis. 2024 Feb 05. 15(2): 111
      Osteoclasts consume an amount of adenosine triphosphate (ATP) to perform their bone resorption function in the development of osteoporosis. However, the mechanism underlying osteoclast energy metabolism has not been fully elucidated. In addition to glucose, glutamine (Glu) is another major energy carrier to produce ATP. However, the role of Glu metabolism in osteoclasts and the related molecular mechanisms has been poorly elucidated. Here we show that Glu is required for osteoclast differentiation and function, and that Glu deprivation or pharmacological inhibition of Glu transporter ASCT2 by V9302 suppresses osteoclast differentiation and their bone resorptive function. In vivo treatment with V9302 improved OVX-induced bone loss. Mechanistically, RNA-seq combined with in vitro and in vivo experiments suggested that Glu mediates the role of IL-17 in promoting osteoclast differentiation and in regulating energy metabolism. In vivo IL-17 treatment exacerbated OVX-induced bone loss, and this effect requires the participation of Glu or its downstream metabolite α-KG. Taken together, this study revealed a previously unappreciated regulation of IL-17 on energy metabolism, and this regulation is Glu-dependent. Targeting the IL-17-Glu-energy metabolism axis may be a potential therapeutic strategy for the treatment of osteoporosis and other IL-17 related diseases.
    DOI:  https://doi.org/10.1038/s41419-024-06475-2
  4. Cell Metab. 2024 Feb 06. pii: S1550-4131(24)00007-X. [Epub ahead of print]36(2): 422-437.e8
      Time-restricted feeding (TRF) has gained attention as a dietary regimen that promotes metabolic health. This study questioned if the health benefits of an intermittent TRF (iTRF) schedule require ketone flux specifically in skeletal and cardiac muscles. Notably, we found that the ketolytic enzyme beta-hydroxybutyrate dehydrogenase 1 (BDH1) is uniquely enriched in isolated mitochondria derived from heart and red/oxidative skeletal muscles, which also have high capacity for fatty acid oxidation (FAO). Using mice with BDH1 deficiency in striated muscles, we discover that this enzyme optimizes FAO efficiency and exercise tolerance during acute fasting. Additionally, iTRF leads to robust molecular remodeling of muscle tissues, and muscle BDH1 flux does indeed play an essential role in conferring the full adaptive benefits of this regimen, including increased lean mass, mitochondrial hormesis, and metabolic rerouting of pyruvate. In sum, ketone flux enhances mitochondrial bioenergetics and supports iTRF-induced remodeling of skeletal muscle and heart.
    Keywords:  acylcarnitines; beta-oxidation; fiber type; intermittent fasting; ketones; metabolic flux; mitochondria; proteomics; striated muscles; time-restricted feeding
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.007
  5. Nat Commun. 2024 Feb 08. 15(1): 1190
      The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.
    DOI:  https://doi.org/10.1038/s41467-024-45477-8
  6. Cell Metab. 2024 Jan 30. pii: S1550-4131(24)00008-1. [Epub ahead of print]
      Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.
    Keywords:  PD-1; PD-L1; Plasmodium chabaudi; TCA cycle; cGAS-STING; immuno checkpoint markers; inate immunity; itaconate; itaconic acid; lymphocytes; malaria; metabolism; methylenesuccinic acid; mitochondria; mitochondrial DNA; monocyte-derived dendritic cells; mtDNA
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.008
  7. iScience. 2024 Feb 16. 27(2): 108893
      α-Synuclein and LRRK2 are associated with both familial and sporadic Parkinson's disease (PD), although the mechanistic link between these two proteins has remained elusive. Treating cells with lysosomotropic drugs causes the recruitment of LRRK2 and its substrate Rab10 onto overloaded lysosomes and induces extracellular release of lysosomal contents. Here we show that lysosomal overload elicits the release of insoluble α-synuclein from macrophages and microglia loaded with α-synuclein fibrils. This release occurred specifically in macrophage lineage cells, was dependent on the LRRK2-Rab10 pathway and involved exosomes. Also, the uptake of α-synuclein fibrils enhanced the LRRK2 phosphorylation of Rab10, which was accompanied by an increased recruitment of LRRK2 and Rab10 onto lysosomal surface. Our data collectively suggest that α-synuclein fibrils taken up in lysosomes activate the LRRK2-Rab10 pathway, which in turn upregulates the extracellular release of α-synuclein aggregates, leading to a vicious cycle that could enhance α-synuclein propagation in PD pathology.
    Keywords:  Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2024.108893
  8. Nat Commun. 2024 Feb 05. 15(1): 1091
      Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice. Mechanistically, CDK6 phosphorylates AMP-activated protein kinase, leading to phosphorylation and inactivation of acetyl-CoA carboxylase, a key enzyme in DNL. CDK6 also phosphorylates CHREBP thus preventing its entry into the nucleus. Ablation of runt related transcription factor 1 in K43M mature adipocytes reverses most of the phenotypes observed in K43M mice. These results demonstrate a role of CDK6 in DNL and a strategy to alleviate metabolic syndromes.
    DOI:  https://doi.org/10.1038/s41467-024-45294-z
  9. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2310479121
      Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the von Hippel Lindau (VHL) gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner. Importantly, the concurrent inhibition of MYC signaling and glutamine metabolism prevented LD accumulation and reduced tumor burden in vivo. Furthermore, we identified the hypoxia-inducible lipid droplet-associated protein (HILPDA) as the key driver for induction of MYC-driven LD accumulation and demonstrated that conversely, proliferation, LD formation, and tumor growth are impaired upon its downregulation. Finally, analysis of ccRCC tissue as well as healthy renal control samples postulated HILPDA as a specific ccRCC biomarker. Together, these results provide an attractive approach for development of alternative therapeutic interventions for the treatment of this type of renal cancer.
    Keywords:  HILPDA; MYC; clear cell renal cell carcinoma; glutamine; lipid droplets
    DOI:  https://doi.org/10.1073/pnas.2310479121
  10. Diabetes. 2024 Feb 06. pii: db230609. [Epub ahead of print]
      Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) is involved in lipid and glucose metabolism via mRNA processing. However, whether and how HNRNPA1 alters adipocyte function in obesity remain obscure. Here, we found that obese state downregulated HNRNPA1 expression in white adipose tissue (WAT). The depletion of adipocyte HNRNPA1 promoted markedly increased macrophage infiltration, proinflammatory and fibrosis genes expression in WAT of obese mice, eventually leading to exacerbated insulin sensitivity, glucose tolerance, and hepatic steatosis. Mechanistically, HNRNPA1 interacted with Ccl2 and regulated its mRNA stability. Intraperitoneal injection of CCL2-CCR2 signaling antagonist improved adipose tissue inflammation and systemic glucose homeostasis. Furthermore, HNRNPA1 expression in human WAT was negatively correlated with BMI, fat percentage, and subcutaneous fat area. Among individuals with 1-year metabolic surgery follow-up, HNRNPA1 expression was positively related to percentage of total weight loss. These findings identify adipocyte HNRNPA1 as a link between adipose tissue inflammation and systemic metabolic homeostasis, which might be a promising therapeutic target for obesity related disorders.
    DOI:  https://doi.org/10.2337/db23-0609
  11. JCI Insight. 2024 Feb 06. pii: e172312. [Epub ahead of print]
      Pattern-Recognition Receptor responses are profoundly attenuated before the third trimester of gestation, in the relatively low oxygen human fetal environment. However, the mechanisms regulating these responses are uncharacterized. Herein, genome-wide transcription and functional metabolic experiments in primary neonatal monocytes linked the negative mTOR regulator DDIT4L to metabolic stress, cellular bioenergetics and innate immune activity. Using genetically engineered monocytic U937 cells, we confirmed that DDIT4L overexpression altered mitochondrial dynamics, suppressing their activity, and blunted LPS-induced cytokine responses. We also showed that monocyte mitochondrial function is more restrictive in earlier gestation, resembling the phenotype of DDIT4L-overexpressing U937 cells. Gene expression analyses in neonatal granulocytes, and lung macrophages in preterm infants confirmed upregulation of the DDIT4L gene in the early postnatal period, and also suggested a potential protective role against inflammation-associated chronic neonatal lung disease. Together, these data show that DDIT4L regulates mitochondrial activity and provide the first direct evidence for its potential role regulating innate immune activity in myeloid cells during development.
    Keywords:  Bioenergetics; Cellular immune response; Immunology; Monocytes
    DOI:  https://doi.org/10.1172/jci.insight.172312
  12. Cell Metab. 2024 Jan 29. pii: S1550-4131(24)00005-6. [Epub ahead of print]
      Although the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS). ROS-induced ferroptosis is critical for tumor growth in the absence of common ferroptosis inducers; strikingly, loss of PHLDA2 abrogates ROS-induced ferroptosis and promotes tumor growth but has no obvious effect in normal tissues in both immunodeficient and immunocompetent mouse tumor models. These data demonstrate that PHLDA2-mediated PA peroxidation triggers a distinct ferroptosis response critical for tumor suppression and reveal that PHLDA2-mediated ferroptosis occurs naturally in vivo without any treatment from ferroptosis inducers.
    Keywords:  ALOX12; GPAT3; PHLDA2; ROS; cystine starvation; ferroptosis; lipid peroxidation; phosphatidic acid; phosphatidylethanolamine; tumor suppression
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.006
  13. Eur J Immunol. 2024 Feb 09. e2350669
      The importance of macrophages in adipose tissue (AT) homeostasis and inflammation is well established. However, the potential cues that regulate their function remain incompletely understood. To bridge this important gap, we sought to characterize novel pathways involved using a mouse model of diet-induced obesity. By performing transcriptomics analysis of AT macrophages (ATMs), we found that late-stage ATMs from high-fat diet mice presented with perturbed Notch signaling accompanied by robust proinflammatory and metabolic changes. To explore the hypothesis that the deregulated Notch pathway contributes to the development of AT inflammation and diet-induced obesity, we employed a genetic approach to abrogate myeloid Notch1 and Notch2 receptors. Our results revealed that the combined loss of Notch1 and Notch2 worsened obesity-related metabolic dysregulation. Body and AT weight gain was higher, blood glucose levels increased and metabolic parameters were substantially worsened in deficient mice fed high-fat diet. Moreover, serum insulin and leptin were elevated as were triglycerides. Molecular analysis of ATMs showed that deletion of Notch receptors escalated inflammation through the induction of an M1-like pro-inflammatory phenotype. Our findings thus support a protective role of myeloid Notch signaling in adipose tissue inflammation and metabolic dysregulation.
    Keywords:  Adipose Tissue Macrophages; Diet-induced Obesity; Insulin resistance; M1-phenotype; Notch signaling
    DOI:  https://doi.org/10.1002/eji.202350669
  14. Cell Metab. 2024 Jan 23. pii: S1550-4131(24)00006-8. [Epub ahead of print]
      Tumors employ diverse strategies for immune evasion. Unraveling the mechanisms by which tumors suppress anti-tumor immunity facilitates the development of immunotherapies. Here, we have identified tumor-secreted fibroblast growth factor 21 (FGF21) as a pivotal immune suppressor. FGF21 is upregulated in multiple types of tumors and promotes tumor progression. Tumor-secreted FGF21 significantly disrupts anti-tumor immunity by rewiring cholesterol metabolism of CD8+T cells. Mechanistically, FGF21 sustains the hyperactivation of AKT-mTORC1-sterol regulatory-element-binding protein 1 (SREBP1) signal axis in the activated CD8+T cells, resulting in the augment of cholesterol biosynthesis and T cell exhaustion. FGF21 knockdown or blockade using a neutralizing antibody normalizes AKT-mTORC1 signaling and reduces excessive cholesterol accumulation in CD8+T cells, thus restoring CD8+T cytotoxic function and robustly suppressing tumor growth. Our findings reveal FGF21 as a "secreted immune checkpoint" that hampers anti-tumor immunity, suggesting that inhibiting FGF21 could be a valuable strategy to enhance the cancer immunotherapy efficacy.
    Keywords:  CD8(+)T; FGF21; cancer immunotherapy; cholesterol; mTORC1; tumor immune evasion
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.005
  15. Biochem J. 2024 Feb 07. pii: BCJ20230486. [Epub ahead of print]
      The development of cardiometabolic complications during obesity is strongly associated with chronic latent inflammation in hypertrophied adipose tissue (AT). IL-4 is an anti-inflammatory cytokine, playing a protective role against insulin resistance, glucose intolerance and weight gain. The positive effects of IL-4 are associated not only with the activation of anti-inflammatory immune cells in AT, but also with the modulation of adipocyte metabolism. IL-4 is known to activate lipolysis and glucose uptake in adipocytes, but the precise regulatory mechanisms and physiological significance of these processes remain unclear. In this study, we detail IL-4 effects on glucose and triacylglycerides (TAG) metabolism and propose mechanisms of IL-4 metabolic action in adipocytes.  We have shown that IL-4 activates glucose oxidation, lipid droplet (LD) fragmentation, lipolysis and thermogenesis in mature 3T3-L1 adipocytes. We found that lipolysis was not accompanied by fatty acids (FA) release from adipocytes, suggesting FA re-esterification. Moreover, glucose oxidation and thermogenesis stimulation depended on adipocyte triglyceride lipase (ATGL) activity, but not the uncoupling protein (UCP1) expression. Based on these data, IL-4 may activate the futile TAG-FA cycle in adipocytes, which enhances the oxidative activity of cells and heat production. Thus, the positive effect of IL-4 on systemic metabolism can be the result of activation of non-canonical thermogenic mechanism in AT, increasing TAG turnover and utilization of excessive glucose.
    Keywords:  Interleukin 4; TAG cycle; adipocytes; thermogenesis
    DOI:  https://doi.org/10.1042/BCJ20230486
  16. Cell Death Differ. 2024 Feb 08.
      The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.
    DOI:  https://doi.org/10.1038/s41418-024-01262-0
  17. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2318024121
      Lipid synthesis is regulated by the actions of Scap, a polytopic membrane protein that binds cholesterol in membranes of the endoplasmic reticulum (ER). When ER cholesterol levels are low, Scap activates SREBPs, transcription factors that upregulate genes for synthesis of cholesterol, fatty acids, and triglycerides. When ER cholesterol levels rise, the sterol binds to Scap, triggering conformational changes that prevent activation of SREBPs and halting synthesis of lipids. To achieve a molecular understanding of how cholesterol regulates the Scap/SREBP machine and to identify therapeutics for dysregulated lipid metabolism, cholesterol-mimetic compounds that specifically bind and inhibit Scap are needed. To accomplish this goal, we focused on Anthrolysin O (ALO), a pore-forming bacterial toxin that binds cholesterol with a specificity and sensitivity that is uncannily similar to Scap. We reasoned that a small molecule that would bind and inhibit ALO might also inhibit Scap. High-throughput screening of a ~300,000-compound library for ALO-binding unearthed one molecule, termed UT-59, which binds to Scap's cholesterol-binding site. Upon binding, UT-59 triggers the same conformation changes in Scap as those induced by cholesterol and blocks activation of SREBPs and lipogenesis in cultured cells. UT-59 also inhibits SREBP activation in the mouse liver. Unlike five previously reported inhibitors of SREBP activation, UT-59 is the only one that acts specifically by binding to Scap's cholesterol-binding site. Our approach to identify specific Scap inhibitors such as UT-59 holds great promise in developing therapeutic leads for human diseases stemming from elevated SREBP activation, such as fatty liver and certain cancers.
    Keywords:  ER–Golgi transport; SREBP; anthrolysin O; hemolysis
    DOI:  https://doi.org/10.1073/pnas.2318024121
  18. iScience. 2024 Feb 16. 27(2): 108894
      Amino acid (AA) transporters (AAT) control AA cellular fluxes across membranes, contributing to maintain cellular homeostasis. In this study, we took advantage of rainbow trout metabolic feature, which highly relies on dietary AA, to explore the cellular and physiological consequences of unbalanced diets on AAT dysregulations with a particular focus on cationic AAs (CAA), frequently underrepresented in plant-based diets. Results evidenced that 24 different CAAT are expressed in various trout tissues, part of which being subjected to AA- and CAA-dependent regulations, with y+LAT2 exchanger being prone to the strongest dysregulations. Moreover, CAA were shown to control two major AA-dependent activation pathways (namely mTOR and GCN2) but at different strength according to the CAA considered. A new feed formulation strategy has been put forward to improve specifically the CAA supplemented absorption in fish together with their growth performance. Such "precision formulation" strategy reveals high potential for nutrition practices, especially in aquaculture.
    Keywords:  Animal nutrition; Aquaculture nutrition; Biological sciences; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2024.108894
  19. Redox Biol. 2024 Jan 22. pii: S2213-2317(24)00030-2. [Epub ahead of print]70 103054
      Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.
    Keywords:  Acod1; Atherosclerosis; IRG1; Immunometabolism; Itaconate; Macrophage
    DOI:  https://doi.org/10.1016/j.redox.2024.103054
  20. Nat Cell Biol. 2024 Feb 05.
      Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.
    DOI:  https://doi.org/10.1038/s41556-024-01348-4
  21. STAR Protoc. 2024 Feb 06. pii: S2666-1667(24)00030-3. [Epub ahead of print]5(1): 102865
      Pinpointing functional, structural, and redox-sensitive cysteines is a central challenge of chemoproteomics. Here, we present a protocol comprising two dual-enrichment cysteine chemoproteomic techniques that enable capture of cysteines (Cys-LoC) and quantification of cysteine oxidation state (Cys-LOx) in a localization-specific manner. We describe steps for utilizing TurboID-mediated protein biotinylation for enrichment of compartment-specific proteins, followed by click-mediated biotinylation and enrichment of cysteine-containing peptides. Thus, changes to compartment-specific cysteine identification and redox state can be assessed in a variety of contexts. For complete details on the use and execution of this protocol, please refer to Yan et al. (2023).1.
    Keywords:  Molecular/Chemical Probes; Proteomics; Systems biology
    DOI:  https://doi.org/10.1016/j.xpro.2024.102865
  22. Nat Commun. 2024 Feb 07. 15(1): 902
      GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.
    DOI:  https://doi.org/10.1038/s41467-024-45046-z
  23. FEBS J. 2024 Feb 05.
      Profound changes in the metabolism of cancer cells have been known for almost 100 years, and many aspects of these changes have continued to be actively studied and discussed. Differences in the results of various studies can be explained by the diversity of tumours, which have differing processes of energy metabolism, and by limitations in the methods used. Here, using fluorescence lifetime needle optical biopsy in a hepatocellular carcinoma (HCC) mouse model and patients with HCC, we measured reduced nicotinamide adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in control liver, and in HCC tumours and their adjacent regions. We found that NADH level (mostly responsible for energy metabolism) is increased in tumours but also in adjacent regions of the same liver. NADPH level is significantly decreased in the tumours of patients but increased in the HCC mouse model. However, in the ex vivo tumour slices of mouse HCC, reactive oxygen species production and glutathione level (both dependent on NADPH) were significantly suppressed. Thus, glucose-dependent NADH and NADPH production in tumours changed but with a more pronounced shift to energy production (NADH), rather than NADPH synthesis for redox balance.
    Keywords:  energy metabolism; fluorescence lifetime; hepatocellular carcinoma; liver cancer; optical biopsy
    DOI:  https://doi.org/10.1111/febs.17067
  24. Cancer Res. 2024 Feb 05.
      Metabolic reprogramming is a hallmark of T cell activation, and metabolic fitness is fundamental for T cell-mediated anti-tumor immunity. Insights into the metabolic plasticity of chimeric antigen receptor (CAR) T cells in patients could help identify approaches to improve their efficacy in treating cancer. Here, we investigated the spatiotemporal immunometabolic adaptation of CD19-targeted CAR T cells using clinical samples from CAR T cell-treated patients. Context-dependent immunometabolic adaptation of CAR T cells demonstrated the link between their metabolism, activation, differentiation, function, and local microenvironment. Specifically, compared to the peripheral blood, low lipid availability, high IL-15, and low TGFβ in the central nervous system microenvironment promoted immunometabolic adaptation of CAR T cells, including upregulation of a lipolytic signature and memory properties. Pharmacologic inhibition of lipolysis in cerebrospinal fluid led to decreased CAR T cell survival. Furthermore, manufacturing CAR T cells in cerebrospinal fluid enhanced their metabolic fitness and anti-leukemic activity. Overall, this study elucidates spatiotemporal immunometabolic rewiring of CAR T cells in patients and demonstrates that these adaptations can be exploited to maximize the therapeutic efficacy of CAR T cells.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-23-2299
  25. Nat Commun. 2024 Feb 05. 15(1): 1076
      Recently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MYDGF also enhances proliferation of human hepatocytes in three-dimensional organoids. In vivo, genetic deletion of MYDGF decreases hepatocyte proliferation in the regenerating mouse liver after PHx; conversely, adeno-associated viral delivery of MYDGF increases hepatocyte proliferation and MAPK signaling after PHx. We conclude that MYDGF represents a mechanically-induced angiocrine signal and that it triggers growth of, and provides protection to, primary mouse and human hepatocytes.
    DOI:  https://doi.org/10.1038/s41467-024-44760-y
  26. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2305035121
      The energy metabolism of the brain is poorly understood partly due to the complex morphology of neurons and fluctuations in ATP demand over time. To investigate this, we used metabolic models that estimate enzyme usage per pathway, enzyme utilization over time, and enzyme transportation to evaluate how these parameters and processes affect ATP costs for enzyme synthesis and transportation. Our models show that the total enzyme maintenance energy expenditure of the human body depends on how glycolysis and mitochondrial respiration are distributed both across and within cell types in the brain. We suggest that brain metabolism is optimized to minimize the ATP maintenance cost by distributing the different ATP generation pathways in an advantageous way across cell types and potentially also across synapses within the same cell. Our models support this hypothesis by predicting export of lactate from both neurons and astrocytes during peak ATP demand, reproducing results from experimental measurements reported in the literature. Furthermore, our models provide potential explanation for parts of the astrocyte-neuron lactate shuttle theory, which is recapitulated under some conditions in the brain, while contradicting other aspects of the theory. We conclude that enzyme usage per pathway, enzyme utilization over time, and enzyme transportation are important factors for defining the optimal distribution of ATP production pathways, opening a broad avenue to explore in brain metabolism.
    Keywords:  ANLS; brain metabolism; genome-scale models; mathematical modeling; metabolism
    DOI:  https://doi.org/10.1073/pnas.2305035121
  27. Nat Commun. 2024 Feb 03. 15(1): 1021
      The epidermal growth factor receptor (EGFR) plays important roles in multiple cellular events, including growth, differentiation, and motility. A major mechanism of downregulating EGFR function involves its endocytic transport to the lysosome. Sorting of proteins into intracellular pathways involves cargo adaptors recognizing sorting signals on cargo proteins. A dileucine-based sorting signal has been identified previously for the sorting of endosomal EGFR to the lysosome, but a cargo adaptor that recognizes this signal remains unknown. Here, we find that phosphoglycerate kinase 1 (PGK1) is recruited to endosomal membrane upon its phosphorylation, where it binds to the dileucine sorting signal in EGFR to promote the lysosomal transport of this receptor. We also elucidate two mechanisms that act in concert to promote PGK1 recruitment to endosomal membrane, a lipid-based mechanism that involves phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and a protein-based mechanism that involves hepatocyte growth factor receptor substrate (Hrs). These findings reveal an unexpected function for a metabolic enzyme and advance the mechanistic understanding of how EGFR is transported to the lysosome.
    DOI:  https://doi.org/10.1038/s41467-024-45443-4