bims-mepmim Biomed News
on Metabolites in pathological microenvironments and immunometabolism
Issue of 2023–04–16
thirty papers selected by
Erika Mariana Palmieri, NIH/NCI Laboratory of Cancer ImmunoMetabolism



  1. iScience. 2023 Apr 21. 26(4): 106425
      Intracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.
    Keywords:  Biological sciences; Epigenetics; Molecular biology; Molecular mechanism of gene regulation; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2023.106425
  2. J Biol Chem. 2023 Apr 10. pii: S0021-9258(23)00337-X. [Epub ahead of print] 104695
      Pulmonary fibrosis is a progressive lung disease characterized by macrophage activation. Asbestos-induced expression of NADPH oxidase 4 (NOX4) in lung macrophages mediates fibrotic progression by the generation of mitochondrial ROS, modulating mitochondrial biogenesis, and promoting apoptosis resistance; however, the mechanism(s) by which NOX4 localizes to mitochondria during fibrosis is not known. Here we show that NOX4 localized to the mitochondrial matrix following asbestos exposure in lung macrophages by a direct interaction with TIM23. TIM23 and NOX4 interaction was found in lung macrophages from human subjects with asbestosis, while it was absent in mice harboring a conditional deletion of NOX4 in lung macrophages. This interaction was localized to the proximal transmembrane region of NOX4. Mechanistically, TIM23 augmented NOX4-induced mitochondrial ROS and metabolic reprogramming to oxidative phosphorylation (OXPHOS). Silencing TIM23 decreased mitochondrial ROS and OXPHOS. These observations highlight the important role of the mitochondrial translocase TIM23 interaction with NOX4. Moreover, this interaction is required for mitochondrial redox signaling and metabolic reprogramming in lung macrophages.
    DOI:  https://doi.org/10.1016/j.jbc.2023.104695
  3. Elife. 2023 Apr 13. pii: e81717. [Epub ahead of print]12
      Quiescent stem cells are activated in response to a mechanical or chemical injury to their tissue niche. Activated cells rapidly generate a heterogeneous progenitor population that regenerates the damaged tissues. While the transcriptional cadence that generates heterogeneity is known, the metabolic pathways influencing the transcriptional machinery to establish a heterogeneous progenitor population remains unclear. Here, we describe a novel pathway downstream of mitochondrial glutamine metabolism that confers stem cell heterogeneity and establishes differentiation competence by countering post-mitotic self-renewal machinery. We discovered that mitochondrial glutamine metabolism induces CBP/EP300-dependent acetylation of stem cell-specific kinase, PASK, resulting in its release from cytoplasmic granules and subsequent nuclear migration. In the nucleus, PASK catalytically outcompetes mitotic WDR5-anaphase-promoting complex/cyclosome (APC/C) interaction resulting in the loss of post-mitotic Pax7 expression and exit from self-renewal. In concordance with these findings, genetic or pharmacological inhibition of PASK or glutamine metabolism upregulated Pax7 expression, reduced stem cell heterogeneity, and blocked myogenesis in vitro and muscle regeneration in mice. These results explain a mechanism whereby stem cells co-opt the proliferative functions of glutamine metabolism to generate transcriptional heterogeneity and establish differentiation competence by countering the mitotic self-renewal network via nuclear PASK.
    Keywords:  cell biology; human; mouse
    DOI:  https://doi.org/10.7554/eLife.81717
  4. Nat Commun. 2023 Apr 14. 14(1): 2132
      Resistance to standard and novel therapies remains the main obstacle to cure in acute myeloid leukaemia (AML) and is often driven by metabolic adaptations which are therapeutically actionable. Here we identify inhibition of mannose-6-phosphate isomerase (MPI), the first enzyme in the mannose metabolism pathway, as a sensitizer to both cytarabine and FLT3 inhibitors across multiple AML models. Mechanistically, we identify a connection between mannose metabolism and fatty acid metabolism, that is mediated via preferential activation of the ATF6 arm of the unfolded protein response (UPR). This in turn leads to cellular accumulation of polyunsaturated fatty acids, lipid peroxidation and ferroptotic cell death in AML cells. Our findings provide further support to the role of rewired metabolism in AML therapy resistance, unveil a connection between two apparently independent metabolic pathways and support further efforts to achieve eradication of therapy-resistant AML cells by sensitizing them to ferroptotic cell death.
    DOI:  https://doi.org/10.1038/s41467-023-37652-0
  5. iScience. 2023 Apr 21. 26(4): 106386
      Cholesterol initiates steroid metabolism in adrenal and gonadal mitochondria, which is essential for all mammalian survival. During stress an increased cholesterol transport rapidly increases steroidogenesis; however, the mechanism of mitochondrial cholesterol transport is unknown. Using rat testicular tissue and mouse Leydig (MA-10) cells, we report for the first time that mitochondrial translocase of outer mitochondrial membrane (OMM), Tom40, is central in cholesterol transport. Cytoplasmic cholesterol-lipids complex containing StAR protein move from the mitochondria-associated ER membrane (MAM) to the OMM, increasing cholesterol load. Tom40 interacts with StAR at the OMM increasing cholesterol transport into mitochondria. An absence of Tom40 disassembles complex formation and inhibits mitochondrial cholesterol transport and steroidogenesis. Therefore, Tom40 is essential for rapid mitochondrial cholesterol transport to initiate, maintain, and regulate activity.
    Keywords:  Biomolecules; Cell biology; Protein folding
    DOI:  https://doi.org/10.1016/j.isci.2023.106386
  6. Redox Biol. 2023 Apr 05. pii: S2213-2317(23)00097-6. [Epub ahead of print]62 102696
      As the essential amino acids, branched-chain amino acid (BCAA) from diets is indispensable for health. BCAA supplementation is often recommended for patients with consumptive diseases or healthy people who exercise regularly. Latest studies and ours reported that elevated BCAA level was positively correlated with metabolic syndrome, diabetes, thrombosis and heart failure. However, the adverse effect of BCAA in atherosclerosis (AS) and its underlying mechanism remain unknown. Here, we found elevated plasma BCAA level was an independent risk factor for CHD patients by a human cohort study. By employing the HCD-fed ApoE-/- mice of AS model, ingestion of BCAA significantly increased plaque volume, instability and inflammation in AS. Elevated BCAA due to high dietary BCAA intake or BCAA catabolic defects promoted AS progression. Furthermore, BCAA catabolic defects were found in the monocytes of patients with CHD and abdominal macrophages in AS mice. Improvement of BCAA catabolism in macrophages alleviated AS burden in mice. The protein screening assay revealed HMGB1 as a potential molecular target of BCAA in activating proinflammatory macrophages. Excessive BCAA induced the formation and secretion of disulfide HMGB1 as well as subsequent inflammatory cascade of macrophages in a mitochondrial-nuclear H2O2 dependent manner. Scavenging nuclear H2O2 by overexpression of nucleus-targeting catalase (nCAT) effectively inhibited BCAA-induced inflammation in macrophages. All of the results above illustrate that elevated BCAA promotes AS progression by inducing redox-regulated HMGB1 translocation and further proinflammatory macrophage activation. Our findings provide novel insights into the role of animo acids as the daily dietary nutrients in AS development, and also suggest that restricting excessive dietary BCAA consuming and promoting BCAA catabolism may serve as promising strategies to alleviate and prevent AS and its subsequent CHD.
    Keywords:  Atherosclerosis (AS); Branched-chain amino acid (BCAA); HMGB1; Hydrogen peroxide (H(2)O(2)); Inflammation; Macrophage; Mitochondria
    DOI:  https://doi.org/10.1016/j.redox.2023.102696
  7. Cell Rep. 2023 Apr 13. pii: S2211-1247(23)00405-9. [Epub ahead of print]42(4): 112394
      The ATP-sensitive K+ (KATP) channel is a key regulator of hormone secretion from pancreatic islet endocrine cells. Using direct measurements of KATP channel activity in pancreatic β cells and the lesser-studied α cells, from both humans and mice, we provide evidence that a glycolytic metabolon locally controls KATP channels on the plasma membrane. The two ATP-consuming enzymes of upper glycolysis, glucokinase and phosphofructokinase, generate ADP that activates KATP. Substrate channeling of fructose 1,6-bisphosphate through the enzymes of lower glycolysis fuels pyruvate kinase, which directly consumes the ADP made by phosphofructokinase to raise ATP/ADP and close the channel. We further show the presence of a plasma membrane-associated NAD+/NADH cycle whereby lactate dehydrogenase is functionally coupled to glyceraldehyde-3-phosphate dehydrogenase. These studies provide direct electrophysiological evidence of a KATP-controlling glycolytic signaling complex and demonstrate its relevance to islet glucose sensing and excitability.
    Keywords:  CP: Metabolism; K(ATP) channel; glycolysis; glycolytic metabolon; inside-out excised patch clamp; metabolic compartmentation; pyruvate kinase
    DOI:  https://doi.org/10.1016/j.celrep.2023.112394
  8. Sci Adv. 2023 Apr 14. 9(15): eadf8522
      It is increasingly becoming clear that cancers are a symbiosis of diverse cell types and tumor clones. Combined single-cell RNA sequencing, flow cytometry, and immunohistochemistry studies of the innate immune compartment in the bone marrow of patients with acute myeloid leukemia (AML) reveal a shift toward a tumor-supportive M2-polarized macrophage landscape with an altered transcriptional program, with enhanced fatty acid oxidation and NAD+ generation. Functionally, these AML-associated macrophages display decreased phagocytic activity and intra-bone marrow coinjection of M2 macrophages together with leukemic blasts strongly enhances in vivo transformation potential. A 2-day in vitro exposure to M2 macrophages results in the accumulation of CALRlow leukemic blast cells, which are now protected against phagocytosis. Moreover, M2-exposed "trained" leukemic blasts display increased mitochondrial metabolism, in part mediated via mitochondrial transfer. Our study provides insight into the mechanisms by which the immune landscape contributes to aggressive leukemia development and provides alternatives for targeting strategies aimed at the tumor microenvironment.
    DOI:  https://doi.org/10.1126/sciadv.adf8522
  9. J Cell Biochem. 2023 Apr 12.
      Activation of hepatic stellate cells (HSC) is a key event in the initiation of liver fibrosis. Activated HSCs proliferate and secrete excessive amounts of extracellular matrix (ECM), disturbing liver architecture and function, leading to fibrosis and eventually cirrhosis. Collagen is the most abundant constituent of ECM and proline is the most abundant amino acid of collagen. Arginine is the precursor in the biosynthetic pathway of proline. Arginine is the exclusive substrate of both nitric oxide synthase (NOS) and arginase. NOS is an M1 (proinflammatory) marker of macrophage polarization whereas arginase-1 (Arg1) is an M2 (profibrogenic) marker of macrophage polarization. Differential expression of NOS and Arg1 has not been studied in HSCs yet. To identify the expression profile of arginine catabolic enzymes during HSC activation and to investigate their role in HSC activation, primary rat HSCs were cultured-activated for 7 days and expression of iNOS and Arg1 were investigated. Nor-NOHA was used as a specific and reversible arginase inhibitor. During HSC activation, iNOS expression decreased whereas Arg1 expression increased. Inhibition of Arg1 in activated HSCs efficiently inhibited collagen production but not cell proliferation. HSC activation is accompanied by a switch of arginine catabolism from iNOS to Arg1. Inhibition of Arg1 decreases collagen synthesis. Therefore, we conclude that Arg1 can be a therapeutic target for the inhibition of liver fibrogenesis.
    Keywords:  Arg1; arginase; arginine; fibrosis; hepatic stellate cell; iNOS; proline
    DOI:  https://doi.org/10.1002/jcb.30403
  10. Nat Commun. 2023 Apr 14. 14(1): 2123
      Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.
    DOI:  https://doi.org/10.1038/s41467-023-37744-x
  11. Nat Commun. 2023 Apr 12. 14(1): 2071
      Dysfunction of interleukin-10 producing regulatory B cells has been associated with the pathogenesis of autoimmune diseases, but whether regulatory B cells can be therapeutically induced in humans is currently unknown. Here we demonstrate that a subset of activated B cells expresses CD25, and the addition of low-dose recombinant IL-2 to in vitro stimulated peripheral blood and splenic human B cells augments IL-10 secretion. Administration of low dose IL-2, aldesleukin, to patients increases IL-10-producing B cells. Single-cell RNA sequencing of circulating immune cells isolated from low dose IL2-treated patients reveals an increase in plasmablast and plasma cell populations that are enriched for a regulatory B cell gene signature. The transcriptional repressor BACH2 is significantly down-regulated in plasma cells from IL-2-treated patients, BACH2 binds to the IL-10 gene promoter, and Bach2 depletion or genetic deficiency increases B cell IL-10, implicating BACH2 suppression as an important mechanism by which IL-2 may promote an immunoregulatory phenotype in B cells.
    DOI:  https://doi.org/10.1038/s41467-023-37424-w
  12. J Biol Chem. 2023 Apr 08. pii: S0021-9258(23)00333-2. [Epub ahead of print] 104691
      Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, in unclear.Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth following nutrient stress. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decrease labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.
    Keywords:  colon cancer; ferritinophagy; iron; mitochondria; mitophagy
    DOI:  https://doi.org/10.1016/j.jbc.2023.104691
  13. Proc Natl Acad Sci U S A. 2023 Apr 18. 120(16): e2216811120
      Matrix stiffening and external mechanical stress have been linked to disease and cancer development in multiple tissues, including the liver, where cirrhosis (which increases stiffness markedly) is the major risk factor for hepatocellular carcinoma. Patients with nonalcoholic fatty liver disease and lipid droplet-filled hepatocytes, however, can develop cancer in noncirrhotic, relatively soft tissue. Here, by treating primary human hepatocytes with the monounsaturated fatty acid oleate, we show that lipid droplets are intracellular mechanical stressors with similar effects to tissue stiffening, including nuclear deformation, chromatin condensation, and impaired hepatocyte function. Mathematical modeling of lipid droplets as inclusions that have only mechanical interactions with other cellular components generated results consistent with our experiments. These data show that lipid droplets are intracellular sources of mechanical stress and suggest that nuclear membrane tension integrates cell responses to combined internal and external stresses.
    Keywords:  HNF4α; chromatin condensation; cytoskeleton; mechanobiology; nuclear deformation
    DOI:  https://doi.org/10.1073/pnas.2216811120
  14. Sci Adv. 2023 Apr 14. 9(15): eadf1956
      Deficiencies in mitochondrial protein import are associated with a number of diseases. However, although nonimported mitochondrial proteins are at great risk of aggregation, it remains largely unclear how their accumulation causes cell dysfunction. Here, we show that nonimported citrate synthase is targeted for proteasomal degradation by the ubiquitin ligase SCFUcc1. Unexpectedly, our structural and genetic analyses revealed that nonimported citrate synthase appears to form an enzymatically active conformation in the cytosol. Its excess accumulation caused ectopic citrate synthesis, which, in turn, led to an imbalance in carbon flux of sugar, a reduction of the pool of amino acids and nucleotides, and a growth defect. Under these conditions, translation repression is induced and acts as a protective mechanism that mitigates the growth defect. We propose that the consequence of mitochondrial import failure is not limited to proteotoxic insults, but that the accumulation of a nonimported metabolic enzyme elicits ectopic metabolic stress.
    DOI:  https://doi.org/10.1126/sciadv.adf1956
  15. Proc Natl Acad Sci U S A. 2023 Apr 18. 120(16): e2222084120
      Macrophage targeting therapies have had limited clinical success in glioblastoma (GBM). Further understanding the GBM immune microenvironment is critical for refining immunotherapeutic approaches. Here, we use genetically engineered mouse models and orthotopic transplantation-based GBM models with identical driver mutations and unique cells of origin to examine the role of tumor cell lineage in shaping the immune microenvironment and response to tumor-associated macrophage (TAM) depletion therapy. We show that oligodendrocyte progenitor cell lineage-associated GBMs (Type 2) recruit more immune infiltrates and specifically monocyte-derived macrophages than subventricular zone neural stem cell-associated GBMs (Type 1). We then devise a TAM depletion system that offers a uniquely robust and sustained TAM depletion. We find that extensive TAM depletion in these cell lineage-based GBM models affords no survival benefit. Despite the lack of survival benefit of TAM depletion, we show that Type 1 and Type 2 GBMs have unique molecular responses to TAM depletion. In sum, we demonstrate that GBM cell lineage influences TAM ontogeny and abundance and molecular response to TAM depletion.
    Keywords:  CSF1R inhibition; cell of origin; glioblastoma; microglia; tumor-associated macrophages
    DOI:  https://doi.org/10.1073/pnas.2222084120
  16. Nat Commun. 2023 Apr 11. 14(1): 2042
      Colonocyte metabolism shapes the microbiome. Metabolites are the main mediators of information exchange between intestine and microbial communities. Arachidonic acid (AA) is an essential polyunsaturated fatty acid and its role in colorectal cancer (CRC) remains unexplored. In this study, we show that AA feeding promotes tumor growth in AOM/DSS and intestinal specific Apc-/- mice via modulating the intestinal microecology of increased gram-negative bacteria. Delta-5 desaturase (FADS1), a rate-limiting enzyme, is upregulated in CRC and effectively mediates AA synthesis. Functionally, FADS1 regulates CRC tumor growth via high AA microenvironment-induced enriched gram-negative microbes. Elimination of gram-negative microbe abolishes FADS1 effect. Mechanistically, gram-negative microbes activate TLR4/MYD88 pathway in CRC cells that contributes FADS1-AA axis to metabolize to prostaglandin E2 (PGE2). Cumulatively, we report a potential cancer-promoting mechanism of FADS1-AA axis in CRC that converts raising synthesized AA to PGE2 via modulating the intestinal microecology of gram-negative.
    DOI:  https://doi.org/10.1038/s41467-023-37590-x
  17. JCI Insight. 2023 Apr 10. pii: e165867. [Epub ahead of print]8(7):
      Regular exercise leads to widespread salutary effects, and there is increasing recognition that exercise-stimulated circulating proteins can impart health benefits. Despite this, limited data exist regarding the plasma proteomic changes that occur in response to regular exercise. Here, we perform large-scale plasma proteomic profiling in 654 healthy human study participants before and after a supervised, 20-week endurance exercise training intervention. We identify hundreds of circulating proteins that are modulated, many of which are known to be secreted. We highlight proteins involved in angiogenesis, iron homeostasis, and the extracellular matrix, many of which are novel, including training-induced increases in fibroblast activation protein (FAP), a membrane-bound and circulating protein relevant in body-composition homeostasis. We relate protein changes to training-induced maximal oxygen uptake adaptations and validate our top findings in an external exercise cohort. Furthermore, we show that FAP is positively associated with survival in 3 separate, population-based cohorts.
    Keywords:  Cardiology; Cardiovascular disease; Extracellular matrix; Metabolism; Proteomics
    DOI:  https://doi.org/10.1172/jci.insight.165867
  18. Nat Commun. 2023 Apr 13. 14(1): 2093
      Thrombocytopenia is a major complication in a subset of patients with multiple myeloma (MM). However, little is known about its development and significance during MM. Here, we show thrombocytopenia is linked to poor prognosis in MM. In addition, we identify serine, which is released from MM cells into the bone marrow microenvironment, as a key metabolic factor that suppresses megakaryopoiesis and thrombopoiesis. The impact of excessive serine on thrombocytopenia is mainly mediated through the suppression of megakaryocyte (MK) differentiation. Extrinsic serine is transported into MKs through SLC38A1 and downregulates SVIL via SAM-mediated tri-methylation of H3K9, ultimately leading to the impairment of megakaryopoiesis. Inhibition of serine utilization or treatment with TPO enhances megakaryopoiesis and thrombopoiesis and suppresses MM progression. Together, we identify serine as a key metabolic regulator of thrombocytopenia, unveil molecular mechanisms governing MM progression, and provide potential therapeutic strategies for treating MM patients by targeting thrombocytopenia.
    DOI:  https://doi.org/10.1038/s41467-023-37699-z
  19. Cell. 2023 Apr 05. pii: S0092-8674(23)00275-1. [Epub ahead of print]
      Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.
    Keywords:  Gpam; Mboat7; NAFLD; NASH; Smyd2; Tbx3; chronic liver disease; fatty liver disease; in vivo screening; somatic mosaicism
    DOI:  https://doi.org/10.1016/j.cell.2023.03.014
  20. J Clin Invest. 2023 Apr 13. pii: e165028. [Epub ahead of print]
      Germline or somatic loss-of-function mutations of fumarate hydratase (FH) predispose patients to an aggressive form of renal cell carcinoma (RCC). Since other than tumor resection, there is no effective therapy for metastatic FH-deficient RCC, an accurate method for early diagnosis is needed. Although MRI or CT scans are offered, they cannot differentiate FH-deficient tumors from other RCCs. Therefore, finding noninvasive plasma biomarkers suitable for rapid diagnosis, screening and surveillance would improve clinical outcomes. Taking advantage of the robust metabolic rewiring that occurs in FH-deficient cells, we performed plasma metabolomics analysis and identified two tumor-derived metabolites, succinyl-adenosine and succinic-cysteine, as outstanding plasma biomarkers for early diagnosis (receiver operating characteristic area under curve (ROCAUC) = 0.98). These two molecules reliably reflected the FH mutation status and tumor mass. We further identified the enzymatic cooperativity by which these biomarkers are produced within the tumor microenvironment. Longitudinal monitoring of patients demonstrated that these circulating biomarkers can be used for reporting on treatment efficacy and identifying recurrent or metastatic tumors.
    Keywords:  Cancer; Genetic diseases; Metabolism; Molecular diagnosis; Oncology
    DOI:  https://doi.org/10.1172/JCI165028
  21. FEBS J. 2023 Apr 15.
      Acute respiratory distress syndrome (ARDS) is an inflammatory disorder of the lungs caused by bacterial or viral infection. Timely phagocytosis and clearance of pathogens by macrophages are important in controlling inflammation and alleviating ARDS. However, the precise mechanism of macrophage phagocytosis remains to be explored. Here, we show that the expression of Rab26 is increased in E. coli or Pseudomonas aeruginosa (Pa)-stimulated bone marrow-derived macrophages (BMDM). Knocking out Rab26 reduced phagocytosis and bacterial clearance by macrophages. Rab26 interacts with mitochondrial fusion protein mitofusin-2 (MFN2) and affects mitochondrial ROS (mtROS) generation by regulating MFN2 transport. The levels of MFN2 in mitochondria were reduced in Rab26-deficient BMDMs, and the levels of mtROS and ATP were significantly decreased. Knocking down MFN2 using siRNA resulted in decreased phagocytosis and killing ability of macrophages. Rab26 knockout reduced phagocytosis and bacterial clearance by macrophages in vivo, significantly increased inflammatory factors, aggravated lung tissue damage, and increased mortality in mice. Our results demonstrate that Rab26 regulates phagocytosis and clearance of bacteria by mediating the transport of MFN2 to mitochondria in macrophages, thus alleviating ARDS in mice and potentially in humans.
    Keywords:  Bacteria; MFN2; Macrophage; Phagocytosis; ROS; Rab26
    DOI:  https://doi.org/10.1111/febs.16793
  22. Nat Commun. 2023 Apr 08. 14(1): 1994
      Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.
    DOI:  https://doi.org/10.1038/s41467-023-37517-6
  23. Nat Cell Biol. 2023 Apr;25(4): 592-603
      Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.
    DOI:  https://doi.org/10.1038/s41556-023-01118-8
  24. Nat Metab. 2023 Apr 13.
      Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.
    DOI:  https://doi.org/10.1038/s42255-023-00780-4
  25. Sci Transl Med. 2023 Apr 12. 15(691): eadd1016
      Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.
    DOI:  https://doi.org/10.1126/scitranslmed.add1016
  26. J Cell Biol. 2023 Jun 05. pii: e202207130. [Epub ahead of print]222(6):
      During oxidative stress neurons release lipids that are internalized by glia. Defects in this coordinated process play an important role in several neurodegenerative diseases. Yet, the mechanisms of lipid release and its consequences on neuronal health are unclear. Here, we demonstrate that lipid-protein particle release by autolysosome exocytosis protects neurons from ferroptosis, a form of cell death driven by lipid peroxidation. We show that during oxidative stress, peroxidated lipids and iron are released from neurons by autolysosomal exocytosis which requires the exocytic machinery VAMP7 and syntaxin 4. We observe membrane-bound lipid-protein particles by TEM and demonstrate that these particles are released from neurons using cryoEM. Failure to release these lipid-protein particles causes lipid hydroperoxide and iron accumulation and sensitizes neurons to ferroptosis. Our results reveal how neurons protect themselves from peroxidated lipids. Given the number of brain pathologies that involve ferroptosis, defects in this pathway likely play a key role in the pathophysiology of neurodegenerative disease.
    DOI:  https://doi.org/10.1083/jcb.202207130
  27. Cell Rep. 2023 Apr 13. pii: S2211-1247(23)00404-7. [Epub ahead of print]42(4): 112393
      Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.
    Keywords:  CP: Immunology; DoHaD; Western-style diet; epigenetics; fatty acid; glycolysis; hematopoiesis; inflammation; macrophage; obesity
    DOI:  https://doi.org/10.1016/j.celrep.2023.112393
  28. Nat Commun. 2023 Apr 13. 14(1): 2109
      Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.
    DOI:  https://doi.org/10.1038/s41467-023-37727-y
  29. Immunol Rev. 2023 Apr 10.
      Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
    Keywords:  inflammation; lipid mediator; membrane; metabolism; phospholipase A2; phospholipid
    DOI:  https://doi.org/10.1111/imr.13205
  30. J Mass Spectrom. 2023 May;58(5): e4918
      Mass spectrometry imaging (MSI) of volatile metabolites is challenging, especially in matrix-assisted laser desorption/ionization (MALDI). Most MALDI ion sources operate in vacuum, which leads to the vaporization of volatile metabolites during analysis. In addition, tissue samples are often dried during sample preparation, leading to the loss of volatile metabolites even for other MSI techniques. On-tissue chemical derivatization can dramatically reduce the volatility of analytes. Herein, a derivatization method is proposed utilizing N,N,N-trimethyl-2-(piperazin-1-yl)ethan-1-aminium iodide to chemically modify short-chain fatty acids in chicken cecum, ileum, and jejunum tissue sections before sample preparation for MSI visualization.
    Keywords:  MALDI; mass spectrometry imaging; on-tissue chemical derivatization; sample preparation; volatile metabolites
    DOI:  https://doi.org/10.1002/jms.4918