J Cachexia Sarcopenia Muscle. 2025 Aug;16(4): e70021
Marc-David Künnemann,
Christian Römer,
Anne Helfen,
Annalen Bleckmann,
Marcel Kemper,
Walter Heindel,
Tobias J Brix,
Michael Forsting,
Johannes Haubold,
Marcel Opitz,
Martin Schuler,
Felix Nensa,
Katarzyna Borys,
René Hosch.
BACKGROUND: AI-driven automated body composition analysis (BCA) may provide quantitative prognostic biomarkers derived from routine staging CTs. This two-centre study evaluates the prognostic value of these volumetric markers for overall survival in lung cancer patients.
METHODS: Lung cancer cohorts from Hospital A (n = 3345, median age 65, 86% NSCLC, 40% M1, 40% female) and B (n = 1364, median age 66, 87% NSCLC, 37% M1, 38% female) underwent automated BCA of abdominal CTs ±60 days of primary diagnosis. A deep learning network segmented muscle, bone and adipose tissues (visceral = VAT, subcutaneous = SAT, intra-/intermuscular = IMAT and total = TAT) to derive three markers: Sarcopenia Index (SI = Muscle/Bone), Myosteatotic Fat Index (MFI = IMAT/TAT) and Abdominal Fat Index (AFI = VAT/SAT). Kaplan-Meier survival analysis, Cox proportional hazards modelling and machine learning-based survival prediction were performed. A survival model including clinical data (BMI, ECOG, L3-SMI, -SATI, -VATI and -IMATI) was fitted on Hospital A data and validated on Hospital B data.
RESULTS: In nonmetastatic NSCLC, high SI predicted longer survival across centres for males (Hospital A: 24.6 vs. 46.0 months; Hospital B: 13.3 vs. 28.9 months; both p < 0.001) and females (Hospital A: 37.9 vs. 53.6 months, p = 0.008; Hospital B: 23.0 vs. 28.6 months, p = 0.018). High MFI indicated reduced survival in males at both hospitals (Hospital A: 43.7 vs. 28.2 months; Hospital B: 28.8 vs. 14.3 months; both p ≤ 0.001) but showed center-dependent effects in females (significant only in Hospital A, p < 0.01). In metastatic disease, SI remained prognostic for males at both centres (p < 0.05), while MFI was significant only in Hospital A (p ≤ 0.001) and AFI only in Hospital B (p = 0.042). Multivariate Cox regression confirmed that higher SI was protective (A: HR 0.53, B: 0.59, p ≤ 0.001), while MFI was associated with shorter survival (A: HR 1.31, B: 1.12, p < 0.01). The multivariate survival model trained on Hospital A's data demonstrated prognostic differentiation of groups in internal (n = 209, p ≤ 0.001) and external (Hospital B, n = 361, p = 0.044) validation, with SI feature importance (0.037) ranking below ECOG (0.082) and M-status (0.078), outperforming all other features including conventional L3-single-slice measurements.
CONCLUSION: CT-based volumetric BCA provides prognostic biomarkers in lung cancer with varying significance by sex, disease stage and centre. SI was the strongest prognostic marker, outperforming conventional L3-based measurements, while fat-related markers showed varying associations. Our multivariate model suggests that BCA markers, particularly SI, may enhance risk stratification in lung cancer, pending centre-specific and sex-specific validation. Integration of these markers into clinical workflows could enable personalized care and targeted interventions for high-risk patients.
Keywords: body composition analysis; deep learning; lung cancer; myosteatosis; sarcopenia