bims-meluca Biomed News
on Metabolism of non-small cell lung carcinoma
Issue of 2024–07–14
nine papers selected by
the Muñoz-Pinedo/Nadal (PReTT) lab, L’Institut d’Investigació Biomèdica de Bellvitge



  1. Nat Commun. 2024 Jul 12. 15(1): 5857
      Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.
    DOI:  https://doi.org/10.1038/s41467-024-50157-8
  2. Clin Cancer Res. 2024 Jul 09.
       PURPOSE: Co-occurring mutations in KEAP1 and STK11KRAS have emerged as determinants of survival outcomes in non-small cell lung cancer (NSCLC) patients treated with immunotherapy. However, these mutational contexts identify a fraction of non-responders to immune checkpoint inhibitors. We hypothesized that KEAP1 wild-type tumors recapitulate the transcriptional footprint of KEAP1 mutations, and that this KEAPness phenotype can determine immune responsiveness with higher precision compared to mutation-based models.
    EXPERIMENTAL DESIGN: The TCGA was used to infer the KEAPness phenotype and explore its immunological correlates at the pan-cancer level. The association between KEAPness and survival outcomes was tested in two independent cohorts of advanced NSCLC patients treated with immunotherapy and profiled by RNA-Seq (SU2C n=153; OAK/POPLAR n=439). The NSCLC TRACERx421 multi-region sequencing study (tumor regions n=947) was used to investigate evolutionary trajectories.
    RESULTS: KEAPness-dominant tumors represented 50% of all NSCLCs and were associated with shorter progression-free survival (PFS) and overall survival (OS) compared to KEAPness-free cases in independent cohorts of NSCLC patients treated with immunotherapy (SU2C PFS P=0.042, OS P=0.008; OAK/POPLAR PFS P=0.0014, OS P<0.001). Patients with KEAPness tumors had survival outcomes comparable to those with KEAP1-mutant tumors. In the TRACERx421, KEAPness exhibited limited transcriptional intratumoral heterogeneity and immune exclusion, resembling the KEAP1-mutant disease. This phenotypic state occurred across genetically divergent tumors, exhibiting shared and private cancer genes under positive selection when compared to KEAP1-mutant tumors.
    CONCLUSIONS: We identified a KEAPness phenotype across evolutionary divergent tumors. KEAPness outperforms mutation-based classifiers as a biomarker of inferior survival outcomes in NSCLC patients treated with immunotherapy.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-24-0626
  3. bioRxiv. 2024 Jun 29. pii: 2024.06.25.599795. [Epub ahead of print]
      Targeting tumor metabolism through dietary interventions is an area of growing interest, and may help to improve the significant mortality of aggressive cancers, including non-small cell lung cancer (NSCLC). Here we show that the restriction of methionine in the aggressive KRAS /Lkb1- mutant NSCLC autochthonous mouse model drives decreased tumor progression and increased carboplatin treatment efficacy. Importantly, methionine restriction during early stages of tumorigenesis prevents the lineage switching known to occur in the model, and alters the tumor immune microenvironment (TIME) to have fewer tumor-infiltrating neutrophils. Mechanistically, mutations in LKB1 are linked to anti-oxidant production through changes to cystathionine-β-synthase (CBS) expression. Human cell lines with rescued LKB1 show increased CBS levels and resistance to carboplatin, which can be partially rescued by methionine restriction. Furthermore, LKB1 rescued cells, but not mutant cells, show less G2- M arrest and apoptosis in high methionine conditions. Knock-down of CBS sensitized both LKB1 mutant and non-mutated lines to carboplatin, again rescuing the carboplatin resistance of the LKB1 rescued lines. Given that immunotherapy is commonly combined with chemotherapy for NSCLC, we next wanted to understand if T cells are impaired by MR. Therefore, we examined the ability of T cells from MR and control tumor bearing mice to proliferate in culture and found that T cells from MR treated mice had no defects in proliferation, even though we continued the MR conditions ex vivo . We also identified that CBS is most highly correlated with smoking, adenocarcinomas with alveolar and bronchiolar features, and adenosquamous cell carcinomas, implicating its roles in oxidative stress response and lineage fate in human tumors. Taken together, we have shown the importance of MR as a dietary intervention to slow tumor growth and improve treatment outcomes for NSCLC.
    DOI:  https://doi.org/10.1101/2024.06.25.599795
  4. Transl Lung Cancer Res. 2024 Jun 30. 13(6): 1277-1295
       Background: Immune therapy has become first-line treatment option for patients with lung cancer, but some patients respond poorly to immune therapy, especially among patients with lung adenocarcinoma (LUAD). Novel tools are needed to screen potential responders to immune therapy in LUAD patients, to better predict the prognosis and guide clinical decision-making. Although many efforts have been made to predict the responsiveness of LUAD patients, the results were limited. During the era of immunotherapy, this study attempts to construct a novel prognostic model for LUAD by utilizing differentially expressed genes (DEGs) among patients with differential immune therapy responses.
    Methods: Transcriptome data of 598 patients with LUAD were downloaded from The Cancer Genome Atlas (TCGA) database, which included 539 tumor samples and 59 normal control samples, with a mean follow-up time of 29.69 months (63.1% of patients remained alive by the end of follow-up). Other data sources including three datasets from the Gene Expression Omnibus (GEO) database were analyzed, and the DEGs between immunotherapy responders and nonresponders were identified and screened. Univariate Cox regression analysis was applied with the TCGA cohort as the training set and GSE72094 cohort as the validation set, and least absolute shrinkage and selection operator (LASSO) Cox regression were applied in the prognostic-related genes which fulfilled the filter criteria to establish a prognostic formula, which was then tested with time-dependent receiver operating characteristic (ROC) analysis. Enriched pathways of the prognostic-related genes were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and tumor immune microenvironment (TIME), tumor mutational burden, and drug sensitivity tests were completed with appropriate packages in R (The R Foundation of Statistical Computing). Finally, a nomogram incorporating the prognostic formula was established.
    Results: A total of 1,636 DEGs were identified, 1,163 prognostic-related DEGs were extracted, and 34 DEGs were selected and incorporated into the immunotherapy responsiveness-related risk score (IRRS) formula. The IRRS formula had good performance in predicting the overall prognoses in patients with LUAD and had excellent performance in prognosis prediction in all LUAD subgroups. Moreover, the IRRS formula could predict anticancer drug sensitivity and immunotherapy responsiveness in patients with LUAD. Mechanistically, immune microenvironments varied profoundly between the two IRRS groups; the most significantly varied pathway between the high-IRRS and low-IRRS groups was ribonucleoprotein complex biogenesis, which correlated closely with the TP53 and TTN mutation burdens. In addition, we established a nomogram incorporating the IRRS, age, sex, clinical stage, T-stage, N-stage, and M-stage as predictors that could predict the prognoses of 1-year, 3-year, and 5-year survival in patients with LUAD, with an area under curve (AUC) of 0.718, 0.702, and 0.68, respectively.
    Conclusions: The model we established in the present study could predict the prognosis of LUAD patients, help to identify patients with good responses to anticancer drugs and immunotherapy, and serve as a valuable tool to guide clinical decision-making.
    Keywords:  Lung adenocarcinoma (LUAD); anticancer drug sensitivity; immunotherapy responsiveness; nomogram; prognosis
    DOI:  https://doi.org/10.21037/tlcr-24-309
  5. J Immunother Cancer. 2024 Jul 11. pii: e009399. [Epub ahead of print]12(7):
       BACKGROUND: Metabolomics has the characteristics of terminal effects and reflects the physiological state of biological diseases more directly. Several current biomarkers of multiple omics were revealed to be associated with immune-related adverse events (irAEs) occurrence. However, there is a lack of reliable metabolic biomarkers to predict irAEs. This study aims to explore the potential metabolic biomarkers to predict risk of irAEs and to investigate the association of plasma metabolites level with survival in patients with lung cancer receiving PD-1/PD-L1 inhibitor treatment.
    METHODS: The study collected 170 plasmas of 85 patients with lung cancer who received immune checkpoint inhibitors (ICIs) treatment. 58 plasma samples of 29 patients with irAEs were collected before ICIs treatment and at the onset of irAEs. 112 plasma samples of 56 patients who did not develop irAEs were collected before ICIs treatment and plasma matched by treatment cycles to onset of irAEs patients. Untargeted metabolomics analysis was used to identify the differential metabolites before initiating ICIs treatment and during the process that development of irAEs. Kaplan-Meier curves analysis was used to detect the associations of plasma metabolites level with survival of patients with lung cancer.
    RESULTS: A total of 24 differential metabolites were identified to predict the occurrence of irAEs. Baseline acylcarnitines and steroids levels are significantly higher in patients with irAEs, and the model of eight acylcarnitine and six steroid metabolites baseline level predicts irAEs occurrence with area under the curve of 0.91. Patients with lower concentration of baseline decenoylcarnitine(AcCa(10:1) 2, decenoylcarnitine(AcCa(10:1) 3 and hexanoylcarnitine(AcCa(6:0) in plasma would have better overall survival (OS). Moreover, 52 differential metabolites were identified related to irAEs during ICIs treatment, dehydroepiandrosterone sulfate, corticoserone, cortisol, thyroxine and sphinganine 1-phaosphate were significantly decreased in irAEs group while oxoglutaric acid and taurocholic acid were significantly increased in irAEs group.
    CONCLUSIONS: High levels of acylcarnitines and steroid hormone metabolites might be risk factor to development of irAEs, and levels of decenoylcarnitine (AcCa(10:1) 2, decenoylcarnitine (AcCa(10:1) 3 and hexanoylcarnitine (AcCa(6:0) could be used to predict OS for patients with lung cancer received ICIs treatment.
    Keywords:  Biomarker; Immune Checkpoint Inhibitor; Lung Cancer
    DOI:  https://doi.org/10.1136/jitc-2024-009399
  6. Int J Biol Sci. 2024 ;20(9): 3285-3301
      Metabolic reprogramming is one of the essential features of tumors that may dramatically contribute to cancer metastasis. Employing liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 12 pairwise serum samples of NSCLC brain metastasis patients before and after CyberKnife Stereotactic Radiotherapy. We evaluated the histopathological architecture of 144 surgically resected NSCLC brain metastases. Differential metabolites were screened and conducted for functional clustering and annotation. Metabolomic profiling identified a pathway that was enriched in the metabolism of branched-chain amino acids (BCAAs). Pathologically, adenocarcinoma with a solid growth pattern has a higher propensity for brain metastasis. Patients with high BCAT1 protein levels in lung adenocarcinoma tissues were associated with a poor prognosis. We found that brain NSCLC cells had elevated catabolism of BCAAs, which led to a depletion of α-KG. This depletion, in turn, reduced the expression and activity of the m6A demethylase ALKBH5. Thus, ALKBH5 inhibition participated in maintaining the m6A methylation of mesenchymal genes and promoted the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC cells and the proliferation of NSCLC cells in the brain. BCAA catabolism plays an essential role in the metastasis of NSCLC cells.
    Keywords:  ALKBH5; BCAT1; EMT; NSCLC; α-KG
    DOI:  https://doi.org/10.7150/ijbs.85672
  7. J Surg Oncol. 2024 Jul 07.
       BACKGROUND: Cancer immunotherapy has had an important role in oncologic therapeutics for patients with non-small cell lung cancer (NSCLC) using checkpoint inhibitors. We will explore the possible prognosis biomarker candidates such as: soluble OX40 (sOX40), OX40L (sOX40L), Glucocorticoid-induced tumor necrosis factor receptor family-related receptor (GITR), and their ligand (GITRL), 4-1BB or tumor necrosis factor receptor superfamily 9 (TNFRS9) and inducible T cell co-stimulator (ICOS) in peripheral blood of NSCLC patients.
    METHODS: Fifty-eight patients were diagnosed with advanced NSCLC between January 2019 and March 2020.
    RESULTS: High sOX40 and low s4-1BB levels in smokers compared non-smoker NSCLC patients. Lower sOX40L levels were found in the male than female (p < 0.05). High sOX40 and sGITRL in stage III compared to the stage IV (p < 0.05). With follow-up at 21.4 months, 44.1% and 91.1% were alive in the sGITRhigh and sGITRlow groups, respectively (p = 0.02), and 73.3% and 27.7% were alive in the sGITRLhigh and sGITRLlow groups, respectively (p = 0.02). At 22 months, 38.7% and 92.3% were alive in the sOX40Lhigh and sOX40Llow groups, respectively (p = 0.01).
    CONCLUSION: sGITR, sGITRL, and sOX40L levels were potential prognostic biomarkers and could have an important role as new targets of immunotherapy in NSCLC patients. sGITR, sGITRL, sOX40L, and sOX40 levels were associated with smoking, sex, stage, and age in NSCLC.
    Keywords:  NSCLC; biomarker; checkpoint; costimulatory; prognostic; soluble
    DOI:  https://doi.org/10.1002/jso.27763
  8. Sci Rep. 2024 Jul 10. 14(1): 15947
      The clinical impact of soluble molecules in pleural effusion (PE) is unclear in patients with malignant pleural mesothelioma (MPM). In this single-center, retrospective, observational study, we assessed soluble forms of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1) using enzyme-linked immunosorbent assays; three TGF-β isoforms were measured via multiplex assay in PE of patients with fibrinous pleuritis (FP) or MPM, to assess relationships between the levels of six molecules, clinicopathological characteristics, and efficacy of immune checkpoint inhibitors. Soluble forms of CTLA-4, PD-L1, PD-1, TGF-β1, TGF-β2, and TGF-β3 were variably produced in PE of FP (n = 34) and MPM (n = 79); we found significant relationships between the six molecules and clinicopathological features. Although none of the three soluble immune checkpoint molecules showed diagnostic or prognostic effects in patients with MPM, TGF-β2 level in PE is a useful differential diagnostic marker between FP and MPM. Both TGF-β1 and TGF-β3 levels are promising prognostic markers for MPM. Moreover, we found that higher baseline levels of PD-1 soluble forms predicted the response to anti-PD1 monotherapy. Our findings identify novel diagnostic, prognostic, and predictive biomarkers for anti-PD1 therapy in patients with MPM.
    Keywords:  Immune checkpoint molecule; Mesothelioma; Pleural effusion; TGF-β; Tumor immune microenvironment
    DOI:  https://doi.org/10.1038/s41598-024-66189-5
  9. FEBS J. 2024 Jul 08.
      Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.
    Keywords:  adipose tissue wasting; cancer cachexia; interleukin‐6; leukemia inhibitory factor; muscle atrophy; oncostatin M
    DOI:  https://doi.org/10.1111/febs.17224