Sci Rep. 2020 11 30. 10(1): 20819
The aim of this study was to examine the relationship between PET-CT derived tumour glucose uptake as measured by maximum standard glucose uptake (SUVmax) and total lesion glycolysis (TLG), nutritional risk as measured by the malnutrition universal screening tool (MUST), CT derived body composition as measured by skeletal muscle index (SMI) and skeletal muscle radiodensity (SMD), the systemic inflammatory response as measured by the modified Glasgow prognostic score (mGPS) and the neutrophil to lymphocyte ratio (NLR) and survival in patients with lung cancer, treated with radiotherapy. In a retrospective cohort study, 119 patients were included in final analyses. The majority of patients were over 65 (86%), female (52%), had a performance status (ECOG-PS) of 0 or 1 (57%), were at nutritional risk (57%), were overweight (53%), had visceral obesity (62%), had a normal SMI (51%), had a low SMD (62%) and were systemically inflammed (mGPS 1/2, 51%). An elevated TLG was associated with sex (p < 0.05), TNM stage (p < 0.001), MUST (p < 0.01) and mGPS (p < 0.01). An elevated mGPS was associated with age (p < 0.05), NLR (p < 0.01), MUST (p < 0.01), and TLG (p < 0.01). On univariate survival analysis, TNM stage (p < 0.01), mGPS (p < 0.05), NLR (p < 0.01), MUST (p ≤ 0.001), Low SMD (p < 0.05), SUVmax (p ≤ 0.001) and TLG (p < 0.001) were associated with overall survival. On multivariate survival analysis MUST (HR: 1.49 95%CI 1.12-01.98 p < 0.01) and TLG (HR: 2.02 95%CI 1.34-3.04 p = 0.001) remained independently associated with survival. In conclusion, elevated tumour metabolic activity was associated with more advanced stage, greater nutritional risk, the systemic inflammatory response and poorer survival but not body composition analysis in patients with lung cancer. These results suggest that detrimental body composition is not directly determined by tumour metabolic activity but rather an ongoing systemic inflammatory response.