Genes (Basel). 2025 Apr 29. pii: 516. [Epub ahead of print]16(5):
Inborn errors of metabolism (IEMs) are a group of disorders resulting from defects in enzymes in metabolic pathways. These disorders impact the processing of metabolites, leading to a wide array of effects on each organ system. Advances in genetic screening have allowed for the early identification and intervention of IEMs, traditionally in the form of enzyme replacement or vitamin supplementation. However, many IEMs disrupt essential metabolic pathways where simple supplementation proves ineffective, resulting in substantial disease burden. In the case of renal IEMs, metabolic pathway disruption leads to the onset of chronic kidney disease (CKD). For these diseases, genetic therapy provides hope. Over the past few decades, the technology for genetic therapy has emerged as a promising solution to these disorders. These therapies aim to correct the source of the defect in the genetic code so that patients may live full, unencumbered lives. In this review, we searched a large database to identify IEMs that affect the kidney and investigated the current landscape and progression of gene therapy technology. Multiple promising genetic therapies were identified for IEMs affecting the kidney, including primary hyperoxaluria, argininemia, glycogen storage diseases Ia and Ib, and Fabry disease. Emerging gene therapy approaches using adeno-associated virus (AAV) vectors, lentiviral vectors, and CRISPR/Cas9 techniques hold promising potential to provide curative treatments for additional single-mutation disorders.
Keywords: Fabry disease; adeno-associated virus vectors; argininemia; glycogen storage diseases; inborn errors of metabolism; kidney; primary hyperoxaluria