bims-meglyc Biomed News
on Metabolic disorders affecting glycosylation
Issue of 2024–08–04
two papers selected by
Silvia Radenkovic, UMC Utrecht



  1. Front Genet. 2024 ;15 1402883
       Introduction: Congenital disorders of glycosylation (CDG) refer to monogenetic diseases characterized by defective glycosylation of proteins or lipids causing multi-organ disorders. Here, we investigate the clinical features and genetic variants of SSR4-CDG and conduct a preliminary investigation of its pathogenesis.
    Methods: We retrospectively report the clinical data of a male infant with early life respiratory distress, congenital diaphragmatic eventration, cosmetic deformities, and moderate growth retardation. Peripheral blood was collected from the case and parents, genomic DNA was extracted and whole-exome sequencing was performed. The mRNA expression of SSR4 gene was quantified by Real-time Quantitative PCR. RNA sequencing analysis was subsequently performed on the case and a healthy child.
    Results: Whole-exome sequencing of the case and his parents' genomic DNA identified a hemizygous c.80_96del in SSR4, combined with the case's clinical features, the diagnosis of CDG was finally considered. In this case, the expression of SSR4 was downregulated. The case were present with 1,078 genes downregulated and 536 genes upregulated. SSR4 gene expression was significantly downregulated in the case. Meanwhile, gene set enrichment analysis (GSEA) revealed that SSR4-CDG may affect hemostasis, coagulation, catabolism, erythrocyte development and homeostatic regulation, and muscle contraction and regulation, etc. Improvement of growth retardation in case after high calorie formula feeding and rehabilitation training.
    Conclusion: Our study expanded the SSR4-CDG variant spectrum and clinical phenotype and analyzed pathways potentially affected by SSR4-CDG, which may provide further insights into the function of SSR4 and help clinicians better understand this disorder.
    Keywords:  SSR4 gene; X-linked disease; congenital disorders of glycosylation; developmental delay; feeding difficulty
    DOI:  https://doi.org/10.3389/fgene.2024.1402883
  2. Biochem Biophys Res Commun. 2024 Jul 29. pii: S0006-291X(24)01006-4. [Epub ahead of print]734 150470
      Protein-protein interactions (PPIs) play fundamental roles in many biological processes including the functioning of glycosylation machineries present in the endoplasmic reticulum (ER) and Golgi apparatus of mammalian cells. For the last couple of years, we have been successfully employing the most advanced version of the split luciferase complementation assay, termed NanoBiT, to demonstrate PPIs between solute carrier 35 (SLC35) family members with nucleotide sugar transporting activity and functionally related glycosyltransferases. NanoBiT has several unmatched advantages as compared with other strategies for studying PPIs. Firstly, the tendency of the free luciferase fragments to spontaneously associate is strongly reduced. As a consequence, the fragments of the reconstituted luciferase may dissociate upon the disruption of the PPI of interest. Secondly, the recombinant fusion proteins are expressed at low (near-endogenous) levels. Both of these features significantly minimize the possibility of obtaining false positive results. In this study we pushed the boundaries of this already powerful technique even further by coupling it with bioluminescence imaging of PPIs. Specifically, we visualized homo- and heterologous complexes formed by MGAT1 and MGAT2 glycosylation enzymes tagged with NanoBiT fragments and demonstrated ER-to-Golgi transitions between enzyme homo- and heteromers.
    Keywords:  Bioluminescence microscopy; Endoplasmic reticulum; Glycosylation; Golgi apparatus; NanoBiT; Protein-protein interactions; Split luciferase complementation assay
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150470