Mol Neurobiol. 2026 Jan 19. 63(1):
372
The transcription factor Nurr1 (NR4A2) serves as an essential element in dopaminergic neuron development since it functions predominantly in the substantia nigra, which becomes severely affected during Parkinson's disease (PD) and Alzheimer's disease (AD). Nurr1 regulates dopamine synthesis, survival-promoting, and oxidative stress genes that affect mitochondrial formation. Nurr1 binds to PGC-1α, allowing for mitochondrial activity regulation. This relationship supports mitochondrial biogenesis. Post-translational changes, including phosphorylation and acetylation, modify Nurr1 transcriptional regulation in order to enhance its ability to regulate mitochondrial genes. The assessment examines Nurr1's involvement in dopaminergic neuron development and mitochondrial formation while showing its role in reducing oxidative damage for an extensive understanding of its neurological disease functionality. Nurr1 serves as a therapeutic candidate for analysis, while the review explores obstacles and potential paths for using Nurr1-based treatments against Parkinson's disease alongside Alzheimer's disease and other neurodegenerative disorders. The extensive research utilized multiple databases, PubMed, Scopus, Medline, and EMBASE, with keywords "Nurr1," "NR4A2," "Neurodegenerative disorders," "Mitochondrial biogenesis," "Oxidative stress," "Parkinson's disease," "Alzheimer's disease," and "Therapeutic target." The analysis examined published research regarding Nurr1-mediated control of dopaminergic function and survival and mitigation of neurological and mitochondrial deficits within the past decade. Nurr1's interactions with important co-regulators like PGCα, its post-translational changes, and its effects on neuroinflammation have also received particular focus. In neurodegenerative illnesses, mitochondrial dysfunction adds to neuronal damage. Nurr1's regulation of mitochondrial biogenesis helps recover mitochondrial function, alleviate oxidative stress, and sustain neuronal survival. Dysregulation of Nurr1 expression is connected to decreased mitochondrial activity and accelerated neurodegeneration.
Keywords: Alzheimer’s disease; Mitochondrial biogenesis; Neurodegeneration; Nurr1; Oxidative stress; PGC-1α; Parkinson’s disease