bims-medebr Biomed News
on Metabolism of the developing brain
Issue of 2022‒09‒18
twenty-one papers selected by
Regina F. Fernández
Johns Hopkins University


  1. J Neurochem. 2022 Sep 11.
      The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N ) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle ) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain β-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.
    Keywords:  glutamate/GABA-glutamine cycle; mass balance; neuronal glucose oxidation; neurotransmission; pseudo-malate-aspartate shuttle model; stoichiometry
    DOI:  https://doi.org/10.1111/jnc.15619
  2. Sci Adv. 2022 Sep 16. 8(37): eabo7639
      To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.
    DOI:  https://doi.org/10.1126/sciadv.abo7639
  3. Front Integr Neurosci. 2022 ;16 760887
      Neuronal densities vary enormously across sites within a brain. Does the density of the capillary bed vary accompanying the presumably larger energy requirement of sites with more neurons, or with larger neurons, or is energy supply constrained by a mostly homogeneous capillary bed? Here we find evidence for the latter, with a capillary bed that represents typically between 0.7 and 1.5% of the volume of the parenchyma across various sites in the mouse brain, whereas neuronal densities vary by at least 100-fold. As a result, the ratio of capillary cells per neuron decreases uniformly with increasing neuronal density and therefore with smaller average neuronal size across sites. Thus, given the relatively constant capillary density compared to neuronal density in the brain, blood and energy availability per neuron is presumably dependent on how many neurons compete for the limited supply provided by a mostly homogeneous capillary bed. Additionally, we find that local capillary density is not correlated with local synapse densities, although there is a small but significant correlation between lower neuronal density (and therefore larger neuronal size) and more synapses per neuron within the restricted range of 6,500-9,500 across cortical sites. Further, local variations in the glial/neuron ratio are not correlated with local variations in the number of synapses per neuron or local synaptic densities. These findings suggest that it is not that larger neurons, neurons with more synapses, or even sites with more synapses demand more energy, but simply that larger neurons (in low density sites) have more energy available per cell and for the totality of its synapses than smaller neurons (in high density sites) due to competition for limited resources supplied by a capillary bed of fairly homogeneous density throughout the brain.
    Keywords:  brain energetics; brain vasculature; capillary density; metabolism; neuronal density
    DOI:  https://doi.org/10.3389/fnint.2022.760887
  4. Cell Mol Life Sci. 2022 Sep 13. 79(10): 515
      Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.
    Keywords:  Foamy macrophages; Inflammation; Lipid droplet associated protein; Lipolysis; Lipophagy
    DOI:  https://doi.org/10.1007/s00018-022-04547-0
  5. J Inherit Metab Dis. 2022 Sep 10.
      We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic CSF profiles from 12 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose may originate from glycosylated proteins; their decreased levels are hypothetically the consequence of insufficient glucose, one of two substrates for O-glucosylation. Since many proteins are O-glucosylated, this deficiency may affect cellular processes and thus contribute to GLUT1DS pathophysiology. The novel CSF biomarkers have the potential to improve the biochemical diagnosis of GLUT1DS. Our findings imply that brain glucose deficiency in GLUT1DS may cause disruptions at the cellular level that go beyond energy metabolism, underlining the importance of developing treatment strategies that directly target cerebral glucose uptake.
    Keywords:  Next-generation metabolic screening; O-glucosylation; SLC2A1; oligosaccharides; untargeted metabolomics
    DOI:  https://doi.org/10.1002/jimd.12554
  6. Brain Struct Funct. 2022 Sep 16.
      Drug memory is associated with drug-taking experience and environmental cues, which mainly contribute to addiction. Recent studies report that glycogenolysis-derived lactate from astrocyte transport to neurons is necessary for long-term potentiation and memory formation instead of its function as an energy substrate. However, the role of astrocyte-neuron lactate transfer in neuronal plasticity and methamphetamine (METH)-induced addiction memory consolidation and retrieval, especially the underlying mechanisms, are not clear. C57BL/6 J mice trained for METH-induced conditioned place preference (CPP) were stereotaxically injected with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) into the dorsal hippocampus (dHPC) 15 min before training. The CPP score was recorded, and neuronal synaptic plasticity was detected with Golgi staining. The neuronal Ca2+ levels were examined using AAV-GCaMP6 injection. Moreover, monocarboxylate transporters (MCT1, MCT2, MCT4) were inhibited with oligodeoxynucleotides in the dHPC to further prove the METH appetitive memory changes. The data showed that inhibiting lactate transport by microinjection with DAB or monocarboxylate transporter oligodeoxynucleotides in the dHPC completely destroyed METH-induced CPP, reduced Npas4 and other plasticity-associated gene expression and decreased neuronal Ca2+ levels and neuronal arborization and spine density, all of which were fully rescued by L-lactate coadministration except for MCT2-ODN administration. Furthermore, the downstream signaling molecule NADH could mimic lactate's effects and trigger METH CPP by influencing the redox state of neurons and regulating NMDA receptor activity. Collectively, these findings indicate that astrocyte-neuron lactate transfer is crucial for METH-induced memory consolidation and retrieval.
    Keywords:  L-Lactate; Memory; Methamphetamine; NADH; Synaptic plasticity
    DOI:  https://doi.org/10.1007/s00429-022-02563-1
  7. Cell Mol Life Sci. 2022 Sep 14. 79(10): 517
      OPA1, a dynamin-related GTPase mutated in autosomal dominant optic atrophy, is essential for the fusion of the inner mitochondrial membrane. Although OPA1 deficiency leads to impaired mitochondrial morphology, the role of OPA1 in central carbon metabolism remains unclear. Here, we aim to explore the functional role and metabolic mechanism of OPA1 in cell fitness beyond the control of mitochondrial fusion. We applied [U-13C]glucose and [U-13C]glutamine isotope tracing techniques to OPA1-knockout (OPA1-KO) mouse embryonic fibroblasts (MEFs) compared to OPA1 wild-type (OPA1-WT) controls. Furthermore, the resulting tracing data were integrated by metabolic flux analysis to understand the underlying metabolic mechanism through which OPA1 deficiency reprograms cellular metabolism. OPA1-deficient MEFs were depleted of intracellular citrate, which was consistent with the decreased oxygen consumption rate in these cells with mitochondrial fission that is not balanced by mitochondrial fusion. Whereas oxidative glucose metabolism was impaired, OPA1-deficient cells activated glutamine-dependent reductive carboxylation and subsequently relied on this reductive metabolism to produce cytosolic citrate as a predominant acetyl-CoA source for de novo fatty acid synthesis. Prevention of cytosolic glutamine reductive carboxylation by GSK321, an inhibitor of isocitrate dehydrogenase 1 (IDH1), largely repressed lipid synthesis and blocked cell proliferation in OPA1-deficient MEFs. Our data support that, when glucose oxidation failed to support lipogenesis and proliferation in cells with unbalanced mitochondrial fission, OPA1 deficiency stimulated metabolic anaplerosis into glutamine-dependent reductive carboxylation in an IDH1-mediated manner.
    Keywords:  Cell growth; Citrate; De novo lipogenesis; OPA1 dysfunction; Oxidative metabolism; Reductive carboxylation
    DOI:  https://doi.org/10.1007/s00018-022-04542-5
  8. J Neurotrauma. 2022 Sep 16.
      Following traumatic brain injury (TBI), cerebral metabolism can become deranged, contributing to secondary injury. Cerebral microdialysis (CMD) allows cerebral metabolism assessment and is often used with other neuro-monitoring modalities. CMD-derived parameters such as the lactate/pyruvate ratio (LPR) show a failure of oxidative energy generation. CMD-based abnormal metabolic states can be described following TBI, informing the aetiology of physiological derangements. This systematic review summarises the published literature on microdialysis-based abnormal metabolic classifications following TBI. Original research studies where the populations were patients with traumatic brain injury were included. Studies that described CMD-based classifications of metabolic abnormalities were included in the narrative results synthesis. A total of 825 studies underwent two-step screening after duplicates were removed. Fifty-three articles that used CMD in TBI patients were included. Of these, 14 described abnormal metabolic states based on CMD parameters. Classifications were heterogeneous between studies. LPR was the most frequently used parameter in the classifications; high LPR values were described as metabolic crisis. Ischaemia was consistently defined as high LPR with low CMD substrate levels (glucose or pyruvate). Mitochondrial dysfunction, describing inability to use energy substrate despite availability, was identified based on raised LPR with near normal levels of pyruvate. This is the first systematic review summarising the published literature on microdialysis-based abnormal metabolic states following TBI. Although variability exists between individual classifications, there is broad agreement around broad definitions of metabolic crisis, ischaemia and mitochondrial dysfunction. Identifying the aetiology of deranged cerebral metabolism after TBI is important to offer targeted treatment interventions.
    Keywords:  ADULT BRAIN INJURY; METABOLISM; MICRODIALYSIS; MITOCHONDRIA; TRAUMATIC BRAIN INJURY
    DOI:  https://doi.org/10.1089/neu.2021.0502
  9. Sci Adv. 2022 Sep 16. 8(37): eadc9317
      Lipids are crucial components of cellular function owing to their role in membrane formation, intercellular signaling, energy storage, and homeostasis maintenance. In the brain, lipid dysregulations have been associated with the etiology and progression of neurodegeneration and other neurological pathologies. Hence, brain lipids are emerging as important potential targets for the early diagnosis and prognosis of neurological diseases. This review aims to highlight the significance and usefulness of lipidomics in diagnosing and treating brain diseases. We explored lipid alterations associated with brain diseases, paying attention to organ-specific characteristics and the functions of brain lipids. As the recent advances in brain lipidomics would have been impossible without advances in analytical techniques, we provide up-to-date information on mass spectrometric approaches and integrative analysis with other omic approaches. Last, we present the potential applications of lipidomics combined with artificial intelligence techniques and interdisciplinary collaborative research for treating brain diseases with clinical heterogeneities.
    DOI:  https://doi.org/10.1126/sciadv.adc9317
  10. Brain Commun. 2022 ;4(5): fcac216
    Alzheimer’s Disease Neuroimaging Initiative
      Neuroimaging in the preclinical phase of Alzheimer's disease provides information crucial to early intervention, particularly in people with a high genetic risk. Metabolic network modularity, recently applied to the study of dementia, is increased in Alzheimer's disease patients compared with controls, but network modularity in cognitively unimpaired elderly with various risks of developing Alzheimer's disease needs to be determined. Based on their 5-year cognitive progression, we stratified 117 cognitively normal participants (78.3 ± 4.0 years of age, 52 women) into three age-matched groups, each with a different level of risk for Alzheimer's disease. From their fluorodeoxyglucose PET we constructed metabolic networks, evaluated their modular structures using the Louvain algorithm, and compared them between risk groups. As the risk for Alzheimer's disease increased, the metabolic connections among brain regions weakened and became more modular, indicating network fragmentation and functional impairment of the brain. We then set out to determine the correlation between regional brain metabolism, particularly in the modules derived from the previous analysis, and the regional expression of Alzheimer-risk genes in the brain, obtained from the Allen Human Brain Atlas. In all risk groups of this elderly population, the regional brain expression of most Alzheimer-risk genes showed a strong correlation with brain metabolism, particularly in the module that corresponded to regions of the brain that are affected earliest and most severely in Alzheimer's disease. Among the genes, APOE and CD33 showed the strongest negative correlation and SORL1 showed the strongest positive correlation with brain metabolism. The Pearson correlation coefficients remained significant when contrasted against a null-hypothesis distribution of correlation coefficients across the whole transcriptome of 20 736 genes (SORL1: P = 0.0130; CD33, P = 0.0136; APOE: P = 0.0093). The strong regional correlation between Alzheimer-related gene expression in the brain and brain metabolism in older adults highlights the role of brain metabolism in the genesis of dementia.
    Keywords:  AHBA gene expression; APOE; Alzheimer’s disease; SORL1; brain metabolism
    DOI:  https://doi.org/10.1093/braincomms/fcac216
  11. Cell Rep. 2022 Sep 13. pii: S2211-1247(22)01148-2. [Epub ahead of print]40(11): 111324
      Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.
    Keywords:  CP: Neuroscience; disrupted in schizophrenia 1; glaucoma; metabolic stress; mitochondria axonal transport; neuronal ATP production; neuroprotection; retinal ganglion cell; vision restoration
    DOI:  https://doi.org/10.1016/j.celrep.2022.111324
  12. STAR Protoc. 2022 Sep 16. 3(3): 101655
      This protocol describes isolation and live-cell metabolic analysis of O4+ oligodendroglia from brain and spinal cord of postnatal mice. We have optimized existing protocols for O4+ isolation from neonatal brain and expanded the protocol to include isolation of highly viable oligodendroglia from spinal cords of postnatal mice up to 18 days of age. Isolated oligodendroglia can be used in multiple downstream analyses, and here we describe an optimized real-time metabolic assay using Agilent Seahorse Analyzer to measure mitochondrial respiration. For complete details on the use and execution of this protocol, please refer to Khandker et al. (2022).
    Keywords:  Cell isolation; Cell-based assays; Metabolism; Neuroscience
    DOI:  https://doi.org/10.1016/j.xpro.2022.101655
  13. Sports Med Health Sci. 2022 Sep;4(3): 147-151
      Physical rehabilitation is an effective therapy to normalize weaknesses encountered with neurological disorders such as traumatic brain injury (TBI). However, the efficacy of exercise is limited during the acute period of TBI because of metabolic dysfunction, and this may further compromise neuronal function. Here we discuss the possibility to normalize brain metabolism during the early post-injury convalescence period to support functional plasticity and prevent long-term functional deficits. Although BDNF possesses the unique ability to support molecular events involved with the transmission of information across nerve cells through activation of its TrkB receptor, the poor pharmacokinetic profile of BDNF has limited its therapeutic applicability. The flavonoid derivative, 7,8-dihydroxyflavone (7,8-DHF), signals through the same TrkB receptors and results in the activation of BDNF signaling pathways. We discuss how the pharmacokinetic limitations of BDNF may be avoided by the use of 7,8-DHF, which makes it a promising pharmacological agent for supporting activity-based rehabilitation during the acute post-injury period after TBI. In turn, docosahexaenoic acid (C22:6n-3; DHA) is abundant in the phospholipid composition of plasma membranes in the brain and its action is important for brain development and plasticity. DHA is a major modulator of synaptic membrane fluidity and function, which is fundamental for supporting cell signaling and synaptic plasticity. Exercise influences DHA function by normalizing DHA content in the brain, such that the collaborative action of exercise and DHA can be instrumental to boost BDNF function with strong therapeutic potential for reducing the deleterious effects of TBI on synaptic plasticity and cognition.
    Keywords:  BDNF; Brain; DHA; Exercise; Synaptic plasticity; Traumatic brain injury
    DOI:  https://doi.org/10.1016/j.smhs.2022.06.001
  14. Orphanet J Rare Dis. 2022 Sep 15. 17(1): 360
      BACKGROUND: Mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects are a group of inherited metabolic diseases. We performed a retrospective cohort study to report on the phenotypic and genotypic spectrum of mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects as well as their treatment outcomes.METHODS: All patients with mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects were included. We divided patients into two groups to compare outcomes of those treated symptomatically (SymX) and asymptomatically (AsymX). We reviewed patient charts for clinical features, biochemical investigations, molecular genetic investigations, cardiac assessments, neuroimaging, treatments, and outcomes.
    RESULTS: There were 38 patients including VLCAD (n = 5), LCHAD (n = 4), CACT (n = 3), MAD (n = 1), CPT-I (n = 13), CPT-II (n = 3) deficiencies and CTD (n = 9). Fourteen patients were diagnosed symptomatically (SymX), and 24 patients were diagnosed asymptomatically (AsymX). Twenty-eight variants in seven genes were identified in 36 patients (pathogenic/likely pathogenic n = 25; variant of unknown significance n = 3). Four of those variants were novel. All patients with LCHAD deficiency had the common variant (p.Glu474Gln) in HADHA and their phenotype was similar to the patients reported in the literature for this genotype. Only one patient with VLCAD deficiency had the common p.Val283Ala in ACADVL. The different genotypes in the SymX and AsymX groups for VLCAD deficiency presented with similar phenotypes. Eight patients were treated with carnitine supplementation [CTD (n = 6), CPT-II (n = 1), and MAD (n = 1) deficiencies]. Thirteen patients were treated with a long-chain fat restricted diet and MCT supplementation. A statistically significant association was found between rhabdomyolysis, and hypoglycemia in the SymX group compared to the AsymX group. A higher number of hospital admissions, longer duration of hospital admissions and higher CK levels were observed in the SymX group, even though the symptomatic group was only 37% of the study cohort.
    CONCLUSION: Seven different mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects were present in our study cohort. In our clinic, the prevalence of mitochondrial long-chain fatty acid oxidation and carnitine defects was 4.75%.
    Keywords:  Carnitine metabolism defects; Long-chain fat restricted diet; Medium chain triglycerides; Mitochondrial long-chain fatty acid oxidation; Newborn screening
    DOI:  https://doi.org/10.1186/s13023-022-02512-5
  15. Front Pharmacol. 2022 ;13 872375
      Antidepressant fluoxetine can affect cerebral glucose metabolism in clinic, but the underlying molecular mechanism remains poorly understood. Here, we examined the effect of fluoxetine on brain regional glucose metabolism in a rat model of depression induced by repeated corticosterone injection, and explored the molecular mechanism. Fluoxetine was found to recover the decrease of 18F-fluorodeoxyglucose (18F-FDG) signal in prefrontal cortex (PFC), and increased 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG, a fluorescent glucose analog) uptake in an astrocyte-specific manner in ex vivo cultured PFC slices from corticosterone-induced depressive rats, which were consistent with its improvement of animal depressive behaviors. Furthermore, fluoxetine restricted nuclear translocation of glucocorticoid receptor (GR) to suppress the transcription of thioredoxin interacting protein (TXNIP). Subsequently, it promoted glucose transporter 1 (GLUT1)-mediated glucose uptake and glycolysis of PFC astrocytes through suppressing TXNIP expression under corticosterone-induced depressive state. More importantly, fluoxetine could improve glucose metabolism of corticosterone-stimulated astrocytes via TXNIP-GLUT1 pathway. These results demonstrated that fluoxetine increased astrocytic glucose uptake and glycolysis in corticosterone-induced depression via restricting GR-TXNIP-GLUT1 pathway. The modulation of astrocytic glucose metabolism by fluoxetine was suggested as a novel mechanism of its antidepressant action.
    Keywords:  GR; TXNIP-GLUT1 pathway; astrocyte; fluoxetine; glycolysis
    DOI:  https://doi.org/10.3389/fphar.2022.872375
  16. Front Cell Neurosci. 2022 ;16 980815
      Nε-lysine acetylation is a reversible posttranslational modification (PTM) involved in multiple physiological functions. Genetic and animal studies have documented the critical roles of protein acetylation in brain development, functions, and various neurological disorders. However, the underlying cellular and molecular mechanism are still partially understood. Here, we profiled and characterized the mouse brain acetylome and investigated the cellular distribution of acetylated brain proteins. We identified 1,818 acetylated proteins, including 5,196 acetylation modification sites, using a modified workflow comprising filter-aided sample preparation (FSAP), acetylated peptides enrichment, and MS analysis without pre- or post-fraction. Bioinformatics analysis indicated these acetylated mouse brain proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and synapse, as well as their involvement in multiple neurological disorders. Manual annotation revealed that a set of brain-specific proteins were acetylation-modified. The acetylation of three brain-specific proteins was verified, including neurofilament light polypeptide (NEFL), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), and neuromodulin (GAP43). Further immunofluorescence staining illustrated that acetylated proteins were mainly distributed in the nuclei of cortex neurons and axons of hippocampal neurons, sparsely distributed in the nuclei of microglia and astrocytes, and the lack of distribution in both cytoplasm and nuclei of cerebrovascular endothelial cells. Together, this study provided a comprehensive mouse brain acetylome and illustrated the cellular-specific distribution of acetylated proteins in the mouse brain. These data will contribute to understanding and deciphering the molecular and cellular mechanisms of protein acetylation in brain development and neurological disorders. Besides, we proposed some problems that need to be solved in future brain acetylome research.
    Keywords:  acetylome; brain; cellular-specific distribution; cerebrovascular endothelial cell; mouse; neuron
    DOI:  https://doi.org/10.3389/fncel.2022.980815
  17. J Alzheimers Dis. 2022 Sep 06.
    Health and Aging Brain Study –Health Disparities (HABS-HD) Study Team
      We examined ethnoracial differences in fatty acid binding protein (FABP)-a family of intracellular lipid carriers-and clarified FABP3 associations with gray and white matter. Relative to Mexican Americans (MAs), FABP3 was higher in NHWs (p <  0.001). Regressions revealed, independent of traditional AD markers, FABP3 was associated with neurodegeneration (B = -0.08, p = 0.003) and WMH burden (B = 0.18, p = 0.03) in MAs, but not in NHWs (ps >  0.18). Findings suggest FABP3 is related to neural health within MAs and highlight its potential as a prognostic marker of brain health in ethnoracially diverse older adults.
    Keywords:  Alzheimer’s disease; FABP3; Hispanic/Latino; lipid dyshomeostasis; mild cognitive impairment
    DOI:  https://doi.org/10.3233/JAD-220524
  18. Neurochem Int. 2022 Sep 13. pii: S0197-0186(22)00144-9. [Epub ahead of print] 105419
      The ever-present risk of brain ischemic events in humans and its full prevention make the detailed studies of an organism's response to ischemia at different levels essential to understanding the mechanism of the injury as well as protection. We used the four-vessel occlusion as an animal model of forebrain ischemia to investigate its impact on the metabolic alterations in both the hippocampus and the blood plasma to see changes on the systemic level. By inducing sublethal ischemic stimuli, we focused on the endogenous phenomena known as ischemic tolerance. NMR spectroscopy was used to analyze relative metabolite levels in tissue extracts from rats' hippocampus and blood plasma in three various ischemic/reperfusion times: 3h, 24h, and 72h. Hippocampal tissues were characterized by postischemically decreased glutamate and GABA (4-aminobutyrate) tissue content balanced with increased glutamine level, with most pronounced changes at 3h reperfusion time. Glutamate (as well as glutamine) levels recovered towards the control levels on the third day, as if the glutamate re-synthesis would be firstly preferred before GABA. These results are indicating the higher feasibility of re-establishing of glutamatergic transmission three days after an ischemic event, in contrast to GABA-ergic. Tissue levels of N-acetylaspartate (NAA), as well as choline, were decreased without the tendency to recover three days after the ischemic event. Metabolomic analysis of blood plasma revealed that ischemically preconditioned rats, contrary to the non-preconditioned animals, did not show hyperglycemic conditions. Ischemically induced semi-ketotic state, manifested in increased plasma ketone bodies 3-hydroxybutyrate and acetoacetate, seems to be programmed to support the brain tissue revitalization after the ischemic event. These and other metabolites changes found in blood plasma as well as in the hippocampus were observed to a lower extent or recovered faster in preconditioned animals. Some metabolomic changes in hippocampal tissue extract were so strong that even single metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
    Keywords:  Blood plasma; Hippocampus; Ischemia; Ischemic preconditioning; NMR metabolomics; Reperfusion
    DOI:  https://doi.org/10.1016/j.neuint.2022.105419
  19. Neurobiol Dis. 2022 Sep 13. pii: S0969-9961(22)00254-6. [Epub ahead of print] 105862
      Krabbe Disease (KD) is an autosomal recessive disorder that results from loss-of-function mutations in the GALC gene, which encodes lysosomal enzyme galactosylceramidase (GALC). Functional deficiency of GALC is toxic to myelin-producing cells, which leads to progressive demyelination in both the central and peripheral nervous systems. It is hypothesized that accumulation of psychosine, which can only be degraded by GALC, is a primary initiator of pathologic cascades. Despite the central role of GALC in KD pathomechanism, investigations of GALC deficiency at a protein level are largely absent, due in part, to the lack of sensitive antibodies in the field. Leveraging two custom antibodies that can detect GALC at endogenous levels, we demonstrated that GALC protein is predominantly localized to oligodendrocytes in cerebral white matter of an infant brain, consistent with its functional role in myelination. Mature GALC could also be quantitatively detected as a 26 kDa band by western blotting and correlated to enzyme activity in brain tissues. The p.Ile562Thr polymorphic variant, which is over-represented in the KD population, was associated with reduced mature GALC protein and activity. In three infantile KD cases, homozygous null mutations in GALC lead to deficiency in total GALC protein and activity. Interestingly, although GALC activity was absent, normal levels of total GALC protein were detected by a sandwich ELISA using our custom antibodies in a later-onset KD brain, which suggests that the assay has the potential to differentiate infantile- and later-onset KD cases. Among the infantile KD cases, we quantified a 5-fold increase in psychosine levels, and observed increased levels of acid ceramidase, a key enzyme for psychosine production, and hyperglycosylated lysosomal-associated membrane protein 1, a marker for lysosomal activation, in periventricular white matter, a major pathological brain region, when compared with age-matched normal controls. While near complete demyelination was observed in these cases, we quantified that an early-infantile case (age of death at 10 months) had about 3-fold increases in both globoid cells, a pathological hallmark for KD, and CD8-positive T lymphocytes, a pathological marker for multiple sclerosis, in the white matter when compared with a slower progressing infantile case (age of death at 21 months), which suggests a positive correlation between clinical severity and neuropathology. Taken together, our findings have advanced the understanding of GALC protein biology in the context of normal and KD brain white matter. We also revealed new neuropathological changes that may provide insights to understand KD pathogenesis.
    Keywords:  Acid ceramidase; CD8-positive T lymphocyte; Cerebral white matter; Demyelination; Galactosylceramidase; Globoid cell leukodystrophy; Krabbe disease; Neuroinflammation; Oligodendrocyte; Psychosine
    DOI:  https://doi.org/10.1016/j.nbd.2022.105862
  20. Am J Alzheimers Dis Other Demen. 2022 Jan-Dec;37:37 15333175221124949
      The ketone bodies, especially the β-hydroxybutyrate, had been shown to modulate the function of the central nervous system and prevent the pathological progression of Alzheimer's disease (AD). However, little is known about the role of acetoacetate in the AD brain. Thus, we intraventricularly injected acetoacetate into familial AD mice (APPSWE) for 14 days and monitored their memory and biochemical changes. During the behavior test, acetoacetate at 100 mg/kg led to significant improvement in both Y-maze and novel object recognition tests (NORTs) (both P < .05), indicating ameliorating spatial and recognition memory, respectively. Biomedical tests revealed two mechanisms were involved. Firstly, acetoacetate inhibited the GPR43-pERK pathway, which led to apparent inhibition in tumor necrosis factor-α and Interleukin-6 expression in the hippocampus in a concentration-dependent manner. Secondarily, acetoacetate stimulated the expression of hippocampal brain-derived neurotrophic factor (BDNF). We concluded that acetoacetate could ameliorate AD symptoms and exhibited promising features as a therapeutic for AD.
    Keywords:  Alzheimer’s disease; GPR43; acetoacetate; brain-derived neurotrophic factor; neuroinflammation memory
    DOI:  https://doi.org/10.1177/15333175221124949
  21. JIMD Rep. 2022 Sep;63(5): 391-399
      Biallelic pathogenic variants in NDUFS8, a nuclear gene encoding a subunit of mitochondrial complex I, result in a mitochondrial disorder characterized by varying clinical presentations and severity. Here, we expand the neuroimaging and clinical spectrum of NDUFS8-related disorder. We present three cases from two unrelated families (a girl and two brothers) homozygous for a recurrent pathogenic NDUFS8 variant [c.460G>A, p.(Gly154Ser)], located in the [4Fe-4S] domain of the protein. One of the patients developed auto-antibody positive diabetic ketoacidosis. Brain MRIs performed in two of the three patients demonstrated diffuse cerebral and cerebellar white matter involvement including corticospinal tracts, but notably had sparing of deep gray matter structures. Our report expands the neuroimaging phenotype of NDUFS8-related disorder to include progressive leukodystrophy with increasing brainstem and cerebellar involvement, with relative sparing of the basal ganglia. In addition, we describe autoimmune diabetes in association with NDUFS8-related disorder, though the exact mechanism of this association is unclear. This paper provides a comprehensive review of case presentation and progressive neuroimaging findings of three patients from two unrelated families that have an identical pathogenic NDUFS8 variant, which expands the clinical spectrum of NDUFS8-associated neurological disease.
    Keywords:  NDUFS8; autoimmune diabetes; mitochondrial disorder; progressive leukodystrophy
    DOI:  https://doi.org/10.1002/jmd2.12303