Aging Adv. 2025 Dec 18.
C Nivedya,
Prasanna Venkhatesh,
Benjamin I Rodriguez,
Han Le,
Jeremiah Afolabi,
Andrea Marshall,
Kit Neikirk,
Sepiso K Masenga,
Muhammad Aftab,
Leo Jake Kazma,
Prasanna Katti,
Antentor Hinton.
Mitochondrial function is crucial in regulating cellular activity and determining cell fate. The replication and transcription of mitochondrial DNA are essential for maintaining mitochondrial integrity. These processes are governed by mitochondrial fission and fusion, which play a vital role in energy distribution, quality control, and metabolic regulation. Mitochondrial fission relies on the coordinated actions of mitochondria-endoplasmic reticulum contact sites, actin filaments, and dynamin-related protein 1, which collectively mediate mitochondrial constriction and fission. This interplay is fundamental to mitochondrial homeostasis and, critically, to the functionality of skeletal muscle. In this review, we explore the complex interactions among dynamin-related protein 1, mitochondria-endoplasmic reticulum contact sites, and actin and their significance for skeletal muscle function. Additionally, we discuss potential strategies to preserve these interactions, supporting optimal muscle performance in skeletal muscle aging. This review provides key insights and outlines future research directions to advance our understanding of this essential yet widely studied relationship.
Keywords: dynamin-related protein 1 (DRP1); exercise interventions; fission and fusion; mitochondria quality control; mitochondrial dynamics; mitochondria–endoplasmic reticulum contact sites (MERCs); mitophagy; posttranslational modifications; sarcopenia; skeletal muscle aging