Phytomedicine. 2024 Aug 18. pii: S0944-7113(24)00610-X. [Epub ahead of print]134 155952
BACKGROUND: The preservation of autophagosome formation presents a promising strategy for tackling neurological disorders, such as Parkinson's disease (PD). Mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) serve not only as a focal point linked to various neurological disorders but also play a crucial role in supporting the biogenesis of autophagosomes.PURPOSE: This investigation aimed to elucidate the neuroprotective properties of phillyrin against PD and its underlying mechanisms in promoting autophagosome formation.
METHODS: ER and mitochondria co-localization was assessed via fluorescent staining. Annexin V-fluorescein isothiocyanate (FITC) fluorescence was employed to quantify accessible cardiolipin (CL) on mitochondrial surfaces. The levels of CL within the MAM fraction of SH-SY5Y cells were evaluated using a CL probe assay kit. Monodansylcadaverine staining was utilized to detect autophagosome formation in SH-SY5Y cells. In an A53T-alpha-synuclein (αSyn)-induced PD mouse model, the anti-PD properties of phillyrin were assessed using open field, pole climbing, and rotarod tests, as well as immunohistochemistry staining of TH+ neurons in the brain sections.
RESULTS: In A53T-αSyn-treated SH-SY5Y cells, phillyrin facilitated autophagosome formation by suppressing CL externalization and restoring MAM integrity. Phillyrin enhanced the localization of receptor expression-enhancing protein 1 (REEP1) within MAM and mitochondria, bolstering MAM formation. Increased REEP1 levels in mitochondria, attributed to phillyrin, enhanced the interaction between REEP1 and NDPK-D, thereby reducing CL externalization. Furthermore, phillyrin exhibited a dose-dependent enhancement of motor function in mice, accompanied by an increase in the abundance of dopaminergic neurons within the substantia nigra.
CONCLUSIONS: These findings illuminate phillyrin's ability to enhance MAM formation through upregulation of REEP1 expression within MAM, while concurrently attenuating CL externalization via the REEP1-NDPK-D interaction. These mechanisms bolster autophagosome biogenesis, offering resilience against A53T-αSyn-induced PD. Thus, our study advances the understanding of phillyrin's complex mechanisms and underscores its potential as a therapeutic approach for PD, opening new avenues in natural product pharmacology.
Keywords: Autophagosome; Cardiolipin; Mitochondria-associated ER membranes; NDPK-D; Parkinson's disease; REEP1; phillyrin