bims-mecosi Biomed News
on Membrane contact sites
Issue of 2024‒07‒07
eleven papers selected by
Verena Kohler, Umeå University



  1. J Cell Biol. 2024 Sep 02. pii: e202311126. [Epub ahead of print]223(9):
      Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.
    DOI:  https://doi.org/10.1083/jcb.202311126
  2. bioRxiv. 2024 Jun 22. pii: 2024.06.21.600134. [Epub ahead of print]
      Bridge-like lipid transport proteins (BLTPs) are an evolutionarily conserved family of proteins that localize to membrane contact sites and are thought to mediate the bulk transfer of lipids from a donor membrane, typically the endoplasmic reticulum (ER), to an acceptor membrane, such as a that of the cell or an organelle 1 . Despite the fundamental importance of BLTPs for cellular function, the architecture, composition, and lipid transfer mechanisms remain poorly characterized. Here, we present the subunit composition and the cryo-electron microscopy structure of the native LPD-3 BLTP complex isolated from transgenic C. elegans . LPD-3 folds into an elongated, rod-shaped tunnel whose interior is filled with ordered lipid molecules that are coordinated by a track of ionizable residues that line one side of the tunnel. LPD-3 forms a complex with two previously uncharacterized proteins, here named "Intake" and "Spigot", both of which interact with the N-terminal end of LPD-3 where lipids enter the tunnel. Intake has three transmembrane helices, one of which borders the entrance to the tunnel; Spigot has one transmembrane helix and extends 80 Å along the cytosolic surface of LPD-3. Experiments in multiple model systems indicate that Spigot plays a conserved role in ER-PM contact site formation. Our LPD-3 complex structural data, together with molecular dynamics simulations of the transmembrane region in a lipid bilayer, reveal protein-lipid interactions that suggest a model for how the native LPD-3-complex mediates bulk lipid transport and provide a foundation for mechanistic studies of BLTPs.
    DOI:  https://doi.org/10.1101/2024.06.21.600134
  3. J Biol Chem. 2024 Jun 27. pii: S0021-9258(24)01999-9. [Epub ahead of print] 107498
      Mitochondria are the nexus of cellular energy metabolism and major signaling hubs that integrate information from within and without the cell to implement cell function. Mitochondria harbor a distinct polyploid genome, mitochondrial DNA (mtDNA), that encodes respiratory chain components required for energy production. MtDNA mutation and depletion have been linked to obesity and metabolic syndrome in humans. At the cellular and subcellular levels, mtDNA synthesis is coordinated by membrane contact sites implicated in lipid transfer from the endoplasmic reticulum, tying genome maintenance to lipid storage and homeostasis. Here, we examine the relationship between mtDNA and lipid trafficking, the influence of lipotoxicity on mtDNA integrity, and how lipid metabolism may be disrupted in primary mtDNA disease.
    Keywords:  Mitochondria; lipid metabolism; lipotoxicity; mitochondrial DNA (mtDNA); mitochondrial metabolism
    DOI:  https://doi.org/10.1016/j.jbc.2024.107498
  4. bioRxiv. 2024 Jun 17. pii: 2024.06.17.599406. [Epub ahead of print]
      The protein alpha-synuclein (αSyn) plays a critical role in the pathogenesis of synucleinopathy, which includes Parkinson's disease and multiple system atrophy, and mounting evidence suggests that lipid dyshomeostasis is a critical phenotype in these neurodegenerative conditions. Previously, we identified that αSyn localizes to mitochondria-associated endoplasmic reticulum membranes (MAMs), temporary functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we have analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data show region-and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed multiples system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn contributes to regulating phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. Our results support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.Significance Statement: Synucleinopathy is a complex group of neurodegenerative disorders whose causes and underlying mechanisms remain unknown. In this work, we examined synucleinopathy postmortem brain samples and patient-derived neuron models and identified the functional impairment of the mitochondrial-associated endoplasmic reticulum membrane (MAM) domain, which facilitates lipid regulation. The protein alpha-synuclein is associated with synucleinopathy and increasing levels result in the mislocalization of this protein and the disruption of MAM domains, which, in turn, results in lipid and membrane composition alterations. Specifically, we report that increased alpha-synuclein expression impairs the regulation of phosphatidylserine synthase 2 and the levels of phosphatidylserine in cellular membranes from affected cells. Our study offers mechanistic insight tying alpha-synuclein pathology and lipid dysregulation as seminal factors in synucleinopathy, which may have pathogenic and therapeutic implications.
    DOI:  https://doi.org/10.1101/2024.06.17.599406
  5. Biochim Biophys Acta Biomembr. 2024 Jul 01. pii: S0005-2736(24)00096-8. [Epub ahead of print] 184365
      Membrane contacts sites (MCSs) play important roles in lipid trafficking across cellular compartments and maintain the widespread structural diversity of organelles. We have utilized microsecond long all-atom (AA) molecular dynamics (MD) simulations and enhanced sampling techniques to unravel the MCS structure targeting by yeast oxysterol binding protein (Osh4) in an environment that mimics the interface of membranes with an increased proportion of anionic lipids using CHARMM36m forcefield with additional CUFIX parameters for lipid-protein electrostatic interactions. In a dual-membrane environment, unbiased MD simulations show that Osh4 briefly interacts with both membranes, before aligning itself with a single membrane, adopting a β-crease-bound conformation similar to observations in a single-membrane scenario. Targeted molecular dynamics simulations followed by microsecond-long AA MD simulations have revealed a distinctive dual-membrane bound state of Osh4 at MCS, wherein the protein interacts with the lower membrane via the β-crease surface, featuring its PHE-239 residue positioned below the phosphate plane of membrane, while concurrently establishing contact with the opposite membrane through the extended α6-α7 region. Osh4 maintains these dual membrane contacts simultaneously over the course of microsecond-long MD simulations. Moreover, binding energy calculations highlighted the essential roles played by the phenylalanine loop and the α6 helix in dynamically stabilizing dual-membrane bound state of Osh4 at MCS. Our computational findings were corroborated through frequency of contact analysis, showcasing excellent agreement with past experimental cross-linking data. Our computational study reveals a dual-membrane bound conformation of Osh4, providing insights into protein-membrane interactions at membrane contact sites and their relevance to lipid transfer processes.
    Keywords:  All-atom molecular dynamics simulation; Membrane contact site; Non-vesicular lipid transfer; Steered and targeted molecular dynamics simulation; Yeast oxysterol binding protein (Osh4)
    DOI:  https://doi.org/10.1016/j.bbamem.2024.184365
  6. Circ Res. 2024 Jul 05. 135(2): 372-396
      Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
    Keywords:  cardiovascular diseases; heart failure; hypertension; mitochondria; myocardium
    DOI:  https://doi.org/10.1161/CIRCRESAHA.124.323800
  7. Oncol Rep. 2024 Sep;pii: 112. [Epub ahead of print]52(3):
      The mitochondria‑associated endoplasmic reticulum (ER) membrane (MAM), serving as a vital link between the mitochondria and ER, holds a pivotal role in maintaining the physiological function of these two organelles. Its specific functions encompass the participation in the biosynthesis and functional regulation of the mitochondria, calcium ion transport, lipid metabolism, oxidative stress and autophagy among numerous other facets. Scientific exploration has revealed that MAMs hold potential as effective therapeutic targets influencing the mitochondria and ER within the context of cancer therapy. The present review focused on elucidating the related pathways of mitochondrial autophagy and ER stress and their practical application in ovarian cancer, aiming to identify commonalities existing between MAMs and these pathways, thereby extending to related applications of MAMs in ovarian cancer treatment. This endeavor aimed at exploring new potential for MAMs in clinically managing ovarian cancer.
    Keywords:  endoplasmic reticulum stress; mitochondrial autophagy; mitochondria‑associated membrane; ovarian cancer
    DOI:  https://doi.org/10.3892/or.2024.8771
  8. Anal Chem. 2024 Jul 03.
      Mitochondria (MT) and the endoplasmic reticulum (ER) maintain lipid and calcium homeostasis through membrane contacts, particularly MT-ER contacts (MERCs), spanning distances from 10 to 50 nm. However, the variation of different distance ranges and the metabolic factors influencing this variation remain poorly understood. This study employed microfluidic chip-based super-resolution microscopy in conjunction with a Moore-Neighbor tracing-incorporated organelle proximity analysis algorithm. This approach enabled precise three-dimensional localization of single-fluorescence protein molecules within narrow and irregular membrane proximities. It achieved lateral localization precision of less than 20 nm, resulting in a minimum MERC distance of approximately 8 nm in spatial and mean distances across multiple threshold ranges. Additionally, we demonstrated that the MERC distance variation was correlated with MT size rather than ER width. The proportion of each distance range varied significantly after the stimuli. Free cholesterol showed a negative correlation with various distances, while distances of 10-30 nm were associated with glucose, glutamine, and pyruvic acid. Furthermore, the 30-40 nm range was influenced by citric acid. These results underscore the role of advanced subcellular organelle analysis in elucidating the single-molecule behavior and organelle morphology in single-cell studies.
    DOI:  https://doi.org/10.1021/acs.analchem.4c02338
  9. Theranostics. 2024 ;14(9): 3719-3738
      Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.
    Keywords:  FUNDC1; Mitochondrial-Endoplasmic Reticulum Contacts; autophagy; cardiotoxicity; doxorubicin
    DOI:  https://doi.org/10.7150/thno.92771
  10. Mol Cell Probes. 2024 Jul 01. pii: S0890-8508(24)00020-3. [Epub ahead of print] 101968
      The close association between organelle interactions, such as mitochondrial-lysosomal interactions, and various diseases, including tumors, remains a challenge for drug discovering and identification. Conventional evaluation methods are often complex and multistep labeling procedures often generate false positives, such as cell damage. To overcome these limitations, we employed a single dual-color reporting molecule called Coupa, which labels mitochondria and lysosomes as blue and red, respectively. This facilitates the evaluation and discovering of drugs targeting mitochondria-lysosome contact (MLC). Using Coupa, we validated the effectiveness of various known antitumor drugs in intervening MLC by assessing their effect on key aspects, such as status, localization, and quantity. This provides evidence for the accuracy and applicability of our dual-color reporting molecule. Notably, we observed that several structural isomers of drugs, including Urolithin (A/B/C), exhibited distinct effects on MLC. In addition, Verteporfin and TEAD were found to induce anti-tumor effects by controlling MLC at the organelle level, suggesting a potential new mechanism of action. Collectively, Coupa offers a novel scientific tool for discovering drugs that target mitochondrial-lysosomal interactions. It not only distinguished the differential effects of structurally similar drugs on the same target, but also reveals new mechanisms underlying the reported antitumor properties of existing drugs. Ultimately, our findings contribute to the advancement of drug discovery and provide valuable insights into the complex interactions between organelles in a disease context.
    Keywords:  drug discovering; lysosome; mitochondria; mitochondrial-lysosomal interaction; sensor
    DOI:  https://doi.org/10.1016/j.mcp.2024.101968