bims-mecosi Biomed News
on Membrane contact sites
Issue of 2024‒05‒19
three papers selected by
Verena Kohler, Umeå University



  1. Plant Cell Environ. 2024 May 14.
      Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.
    Keywords:  ER‐PM contact sites; carbon dioxide; cellular regulation; hydrogen peroxide; phosphorylation; water
    DOI:  https://doi.org/10.1111/pce.14942
  2. Neurosci Insights. 2024 ;19 26331055241252772
      Cholesterol and calcium play crucial roles as integral structural components and functional signaling entities within the central nervous system. Disruption in cholesterol homeostasis has been linked to Alzheimer's, Parkinson's, and Huntington's Disease while alterations in calcium signaling is hypothesized to be a key substrate for neurodegeneration across many disorders. Despite the importance of regulated cholesterol and calcium homeostasis for brain health there has been an absence of research investigating the interdependence of these signaling molecules and how they can tune each other's abundance at membranes to influence membrane identity. Here, we discuss the role of cholesterol in shaping calcium dynamics in a neurodegenerative disorder that arises due to mutations in the lysosomal cholesterol transporter, Niemann Pick Type C1 (NPC1). We discuss the molecular mechanisms through which altered lysosomal cholesterol transport influences calcium signaling pathways through remodeling of ion channel distribution at organelle-organelle membrane contacts leading to neurodegeneration. This scientific inquiry not only sheds light on NPC disease but also holds implications for comprehending other cholesterol-associated neurodegenerative disorders.
    Keywords:  Calcium (Ca2+); Niemann-Pick type C1 (NPC1); membrane contact sites; neurodegeneration; voltage-gated calcium channel (CaV); voltage-gated potassium channel
    DOI:  https://doi.org/10.1177/26331055241252772
  3. Proc Natl Acad Sci U S A. 2024 May 21. 121(21): e2321512121
      The outer membrane (OM) of didermic gram-negative bacteria is essential for growth, maintenance of cellular integrity, and innate resistance to many antimicrobials. Its asymmetric lipid distribution, with phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet, is required for these functions. Lpt proteins form a transenvelope bridge that transports newly synthesized LPS from the inner membrane (IM) to OM, but how the bulk of phospholipids are transported between these membranes is poorly understood. Recently, three members of the AsmA-like protein family, TamB, YhdP, and YdbH, were shown to be functionally redundant and were proposed to transport phospholipids between IM and OM in Escherichia coli. These proteins belong to the repeating β-groove superfamily, which includes eukaryotic lipid-transfer proteins that mediate phospholipid transport between organelles at contact sites. Here, we show that the IM-anchored YdbH protein interacts with the OM lipoprotein YnbE to form a functional protein bridge between the IM and OM in E. coli. Based on AlphaFold-Multimer predictions, genetic data, and in vivo site-directed cross-linking, we propose that YnbE interacts with YdbH through β-strand augmentation to extend the continuous hydrophobic β-groove of YdbH that is thought to shield acyl chains of phospholipids as they travel through the aqueous intermembrane periplasmic compartment. Our data also suggest that the periplasmic protein YdbL prevents extensive amyloid-like multimerization of YnbE in cells. We, therefore, propose that YdbL has a chaperone-like function that prevents uncontrolled runaway multimerization of YnbE to ensure the proper formation of the YdbH-YnbE intermembrane bridge.
    Keywords:  AsmA-like proteins; lipid transport; membrane contact sites; outer membrane biogenesis; transenvelope complex
    DOI:  https://doi.org/10.1073/pnas.2321512121