bims-mecosi Biomed News
on Membrane contact sites
Issue of 2024‒03‒10
eleven papers selected by
Verena Kohler, Umeå University



  1. PLoS Biol. 2024 Mar;22(3): e3002529
      At the core of organelle functions lies their ability and need to form dynamic organelle-organelle networks that drive intracellular communication and coordination of cellular pathways. These networks are facilitated by membrane contact sites (MCSs) that promote both intra-organelle and inter-organelle communication. Given their multiple functions, MCSs and the proteins that form them are commonly co-opted by viruses during infection to promote viral replication. This Essay discusses mechanisms acquired by diverse human viruses to regulate MCS functions in either proviral processes or host defense. It also examines techniques used for examining MCSs in the context of viral infections.
    DOI:  https://doi.org/10.1371/journal.pbio.3002529
  2. Elife. 2024 Mar 06. pii: e85962. [Epub ahead of print]13
      Cell motility processes highly depend on the membrane distribution of Phosphoinositides, giving rise to cytoskeleton reshaping and membrane trafficking events. Membrane contact sites serve as platforms for direct lipid exchange and calcium fluxes between two organelles. Here, we show that VAPA, an ER transmembrane contact site tether, plays a crucial role during cell motility. CaCo2 adenocarcinoma epithelial cells depleted for VAPA exhibit several collective and individual motility defects, disorganized actin cytoskeleton and altered protrusive activity. During migration, VAPA is required for the maintenance of PI(4)P and PI(4,5)P2 levels at the plasma membrane, but not for PI(4)P homeostasis in the Golgi and endosomal compartments. Importantly, we show that VAPA regulates the dynamics of focal adhesions (FA) through its MSP domain, is essential to stabilize and anchor ventral ER-PM contact sites to FA, and mediates microtubule-dependent FA disassembly. To conclude, our results reveal unknown functions for VAPA-mediated membrane contact sites during cell motility and provide a dynamic picture of ER-PM contact sites connection with FA mediated by VAPA.
    Keywords:  E. coli; cell adhesion; cell biology; cell migration; endoplasmic reticulum; human; lipid trafficking; membrane contact sites; phosphoinositides
    DOI:  https://doi.org/10.7554/eLife.85962
  3. J Cell Biol. 2024 Apr 01. pii: e202304075. [Epub ahead of print]223(4):
      Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes.
    DOI:  https://doi.org/10.1083/jcb.202304075
  4. Nat Cell Biol. 2024 Mar 07.
      Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
    DOI:  https://doi.org/10.1038/s41556-024-01364-4
  5. Sci Data. 2024 Mar 08. 11(1): 281
      Organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication by forming close contacts called "membrane contact sites (MCSs)". And many proteins have been identified as residing in MCS and playing important roles in maintaining and fulfilling specific functions within these microdomains. However, a comprehensive compilation of these MCS proteins is still lacking. Therefore, we developed MCSdb, a manually curated resource of MCS proteins and complexes from publications. MCSdb documents 7010 MCS protein entries and 263 complexes, involving 24 organelles and 44 MCSs across 11 species. Additionally, MCSdb orchestrates all data into different categories with multitudinous information for presenting MCS proteins. In summary, MCSdb provides a valuable resource for accelerating MCS functional interpretation and interorganelle communication deciphering.
    DOI:  https://doi.org/10.1038/s41597-024-03104-7
  6. Environ Sci Pollut Res Int. 2024 Mar 06.
      Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.
    Keywords:  Autophagy; Brain; Endoplasmic reticulum quality control; Mitochondria-associated endoplasmic reticulum membrane; Vanadium
    DOI:  https://doi.org/10.1007/s11356-023-31413-8
  7. Sci Total Environ. 2024 Mar 04. pii: S0048-9697(24)01539-0. [Epub ahead of print] 171398
      Methylmercury (MeHg), as a global environmental pollutant, is of concern globally due to its neurodevelopmental toxicity. Mitochondria-associated membranes (MAMs) are highly dynamic sites of endoplasmic reticulum (ER)-haemocyte contact. MAMs are closely associated with the pathophysiology of neurological disorders due to their role in the transfer of calcium ions (Ca2+) between mitochondria and the ER. However, the molecular mechanisms that control these interactions in MeHg-induced neurotoxicity have not yet been characterized. In the current study, MeHg caused increases in the levels of both cytosolic and mitochondrial Ca2+ in PC12 cells and promoted MAMs formation in both in vivo and in vitro experiments. Of note, MeHg perturbed mitochondrial dynamics, promoting a shift toward a fission phenotype, and this was supported by the dysregulation of fission regulators. Interestingly, the MeHg-induced promotion of MAMs formation and increase in Ca2+ levels were effectively attenuated by the inhibition of mitochondrial fission using Mdivi-1, a DRP1 inhibitor. Furthermore, MeHg triggered the AMPK pathway, and most of the aforementioned changes were significantly rescued by Compound C. Mechanistic investigations revealed a reciprocal relationship between AMPK- and Ca2+-mediated mitochondrial fission. The specific inhibitor of Ca2+ uniporter, ruthenium-red (RuR), effectively abolished the feedback regulation of mitochondrial dynamics and MAMs formation mediated by AMPK in response to MeHg-induced Ca2+ overload. This study reveals a novel role of AMPK-DRP1-mediated mitochondrial fragmentation in the coupling of ER-mitochondrial calcium microdomains in MeHg-induced neurotoxicity. The findings provide valuable insights for the development of strategies to regulate mitochondrial imbalances in neurological diseases.
    Keywords:  Calcium; Endoplasmic reticulum; Methylmercury; Mitochondria; Neurotoxicity
    DOI:  https://doi.org/10.1016/j.scitotenv.2024.171398
  8. J Agric Food Chem. 2024 Mar 08.
      Glycinin (11S) and β-conglycinin (7S) from soybean (glycine max) cause diarrhea and intestinal barrier damage in young animals. Understanding the mechanisms underlying the damage caused by 7S and 11S, it is vital to develop strategies to eliminate allergenicity. Consequently, we investigated 7S/11S-mediated apoptosis in porcine intestinal epithelial (IPEC-J2) cells. IPEC-J2 cells suffered endoplasmic reticulum stress (ERS) in response to 7S and 11S, activating protein kinase RNA-like ER kinase, activating transcription factor 6, C/EBP homologous protein, and inositol-requiring enzyme 1 alpha. 4-Phenylbutyric acid (4-PBA) treatment alleviated ERS; reduced the NLR family pyrin domain containing 3, interleukin-1β, and interleukin-18 levels; inhibited apoptosis; increased mitofusin 2 expression; and mitigated Ca2+ overload and mitochondria-associated ER membrane (MAM) dysfunction, thereby ameliorating IPEC-J2 injury. We demonstrated the pivotal role of ERS in MAM dysfunction and 7S- and 11S-mediated apoptosis, providing insights into 7S- and 11S-mediated intestinal barrier injury prevention and treatment.
    Keywords:  apoptosis; endoplasmic reticulum stress; mitochondria-associated endoplasmic reticulum membrane; soybean glycinin; β-conglycinin
    DOI:  https://doi.org/10.1021/acs.jafc.3c09630
  9. Front Mol Biosci. 2024 ;11 1354682
      Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
    Keywords:  apoptosis; disease adaptation; kinase; mitochondria; mitochondrial associated endoplasmic reticulum membranes (MAMs); mitochondrial morphology; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3389/fmolb.2024.1354682
  10. Nat Cell Biol. 2024 Mar 07.
      β-Propeller protein-associated neurodegeneration (BPAN) is a rare X-linked dominant disease, one of several conditions that manifest with neurodegeneration and brain iron accumulation. Mutations in the WD repeat domain 45 (WDR45) gene encoding WIPI4 lead to loss of function in BPAN but the cellular mechanisms of how these trigger pathology are unclear. The prevailing view in the literature is that BPAN is simply the consequence of autophagy deficiency given that WIPI4 functions in this degradation pathway. However, our data indicate that WIPI4 depletion causes ferroptosis-a type of cell death induced by lipid peroxidation-via an autophagy-independent mechanism, as demonstrated both in cell culture and in zebrafish. WIPI4 depletion increases ATG2A localization at endoplasmic reticulum-mitochondrial contact sites, which enhances phosphatidylserine import into mitochondria. This results in increased mitochondrial synthesis of phosphatidylethanolamine, a major lipid prone to peroxidation, thus enabling ferroptosis. This mechanism has minimal overlap with classical ferroptosis stimuli but provides insights into the causes of neurodegeneration in BPAN and may provide clues for therapeutic strategies.
    DOI:  https://doi.org/10.1038/s41556-024-01373-3
  11. Brain. 2024 Mar 04. pii: awae070. [Epub ahead of print]
      Parkinson's disease (PD) is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular etiology of the disease is still unclear. Several cellular pathways have been linked to PD, including the autophagy-lysosome pathway (ALP), α-synuclein (α-syn) aggregation, and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal β-glucocerebrosidase (GCase), and PD lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid buildup, disrupting lysosomal function and autophagy, thereby triggering α-syn accumulation. Additionally, α-syn aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-syn accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine-adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in PD pathogenesis and discuss promising examples of GCase-based therapeutics such as gene and enzyme replacement therapies, small molecule chaperones, and substrate reduction therapies, among others, as potential therapeutic interventions.
    Keywords:  Gaucher’s disease; Parkinson’s disease; lysosome; mitochondria; neurodegeneration; therapeutics
    DOI:  https://doi.org/10.1093/brain/awae070