Arch Biochem Biophys. 2023 Sep 09. pii: S0003-9861(23)00242-4. [Epub ahead of print]747 109743
BACKGROUND: Maladaptive right ventricular (RV) remodeling is the most important pathological feature of pulmonary hypertension (PH), involving processes such as myocardial hypertrophy and fibrosis. A growing number of studies have shown that mitochondria-associated endoplasmic reticulum membranes (MAMs) are involved in various physiological and pathological processes, such as calcium homeostasis, lipid metabolism, inflammatory response, mitochondrial dynamics, and autophagy/mitophagy. The abnormal expression of MAMs-related factors is closely related to the occurrence and development of heart-related diseases. However, the role of MAM-related factors in the maladaptive RV remodeling of PH rats remains unclear.METHODS AND RESULTS: We first obtained the transcriptome data of RV tissues from PH rats induced by Su5416 combined with hypoxia treatment (SuHx) from the Gene Expression Omnibus (GEO) database. The results showed that two MAMs-related genes (Opa1 and Mfn2) were significantly down-regulated in RV tissues of SuHx rats, accompanied by significant up-regulation of cardiac hypertrophy-related genes (such as Nppb and Myh7). Subsequently, using the SuHx-induced PH rat model, we found that the downregulation of mitochondrial fusion proteins Opa1 and Mfn2 may be involved in maladaptive RV remodeling by accelerating mitochondrial dysfunction. Finally, at the cellular level, we found that overexpression of Opa1 and Mfn2 could inhibit hypoxia-induced mitochondrial fission and reduce ROS production in H9c2 cardiomyocytes, thereby retarded the progression of cardiomyocyte hypertrophy.
CONCLUSIONS: The down-regulation of mitochondrial fusion protein Opa1/Mfn2 can accelerate cardiomyocyte hypertrophy and then participate in maladaptive RV remodeling in SuHx-induced PH rats, which may be potential targets for preventing maladaptive RV remodeling.
Keywords: Maladaptive right ventricular remodeling; Mitochondria-associated endoplasmic reticulum membranes; Mitochondrial dynamics; Mitofusin 2; Optic atrophy 1; Pulmonary hypertension