Curr Biol. 2022 Jul 31. pii: S0960-9822(22)01115-0. [Epub ahead of print]
For centuries, humans have cultivated cannabis for the pharmacological properties that result from consuming its specialized metabolites, primarily cannabinoids and terpenoids. Today, cannabis is a multi-billion-dollar industry whose existence rests on the biological activity of tiny cell clusters, called glandular trichomes, found mainly on flowers. Cannabinoids are toxic to cannabis cells,1 and how the trichome cells can produce and secrete massive quantities of lipophilic metabolites is not known.1 To address this gap in knowledge, we investigated cannabis glandular trichomes using ultra-rapid cryofixation, quantitative electron microscopy, and immuno-gold labeling of cannabinoid pathway enzymes. We demonstrate that the metabolically active cells in cannabis form a "supercell," with extensive cytoplasmic bridges across the cell walls and a polar distribution of organelles adjacent to the apical surface where metabolites are secreted. The predicted metabolic role of the non-photosynthetic plastids is supported by unusual membrane arrays in the plastids and the localization of the start of the cannabinoid/terpene pathway in the stroma of the plastids. Abundant membrane contact sites connected plastid paracrystalline cores with the plastid envelope, plastid with endoplasmic reticulum (ER), and ER with plasma membrane. The final step of cannabinoid biosynthesis, catalyzed by tetrahydrocannabinolic acid synthase (THCAS), was localized in the cell-surface wall facing the extracellular storage cavity. We propose a new model of how the cannabis cells can support abundant metabolite production, with emphasis on the key role of membrane contact sites and extracellular THCA biosynthesis. This new model can inform synthetic biology approaches for cannabinoid production in yeast or cell cultures.
Keywords: TEM; THCAS; cannabinoids; cannabis; glandular trichome; immunolocalization; membrane contact site; plastid; polarization; syncytium